Structural Stability of Simplest Dynamical Inequalities
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and optimization, Tome 256 (2007), pp. 89-101
Voir la notice de l'article provenant de la source Math-Net.Ru
The structural stability of families of orbits is proved for the simplest generic smooth dynamical inequality in the plane with bounded complement of the domain of complete controllability. Typical singularities of the boundaries of nonlocal transitivity zones for such inequalities are found. The stability of these singularities under small perturbations of the generic inequality is proved.
@article{TM_2007_256_a4,
author = {Yu. A. Grishina and A. A. Davydov},
title = {Structural {Stability} of {Simplest} {Dynamical} {Inequalities}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {89--101},
publisher = {mathdoc},
volume = {256},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2007_256_a4/}
}
TY - JOUR AU - Yu. A. Grishina AU - A. A. Davydov TI - Structural Stability of Simplest Dynamical Inequalities JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2007 SP - 89 EP - 101 VL - 256 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2007_256_a4/ LA - ru ID - TM_2007_256_a4 ER -
Yu. A. Grishina; A. A. Davydov. Structural Stability of Simplest Dynamical Inequalities. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and optimization, Tome 256 (2007), pp. 89-101. http://geodesic.mathdoc.fr/item/TM_2007_256_a4/