Structural Stability of Simplest Dynamical Inequalities
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and optimization, Tome 256 (2007), pp. 89-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

The structural stability of families of orbits is proved for the simplest generic smooth dynamical inequality in the plane with bounded complement of the domain of complete controllability. Typical singularities of the boundaries of nonlocal transitivity zones for such inequalities are found. The stability of these singularities under small perturbations of the generic inequality is proved.
@article{TM_2007_256_a4,
     author = {Yu. A. Grishina and A. A. Davydov},
     title = {Structural {Stability} of {Simplest} {Dynamical} {Inequalities}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {89--101},
     publisher = {mathdoc},
     volume = {256},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2007_256_a4/}
}
TY  - JOUR
AU  - Yu. A. Grishina
AU  - A. A. Davydov
TI  - Structural Stability of Simplest Dynamical Inequalities
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2007
SP  - 89
EP  - 101
VL  - 256
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2007_256_a4/
LA  - ru
ID  - TM_2007_256_a4
ER  - 
%0 Journal Article
%A Yu. A. Grishina
%A A. A. Davydov
%T Structural Stability of Simplest Dynamical Inequalities
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2007
%P 89-101
%V 256
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2007_256_a4/
%G ru
%F TM_2007_256_a4
Yu. A. Grishina; A. A. Davydov. Structural Stability of Simplest Dynamical Inequalities. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and optimization, Tome 256 (2007), pp. 89-101. http://geodesic.mathdoc.fr/item/TM_2007_256_a4/

[1] Andronov A.A., Pontryagin L.S., “Grubye sistemy”, DAN SSSR, 14:5 (1937), 247–250 | MR | Zbl

[2] Anosov D.V., Aranson S.Kh., Bronshtein I.U., Grines V.Z., “Gladkie dinamicheskie sistemy”, Dinamicheskie sistemy–1, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 1, VINITI, M., 1985, 151–242 | MR

[3] Arnold V.I., Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978 | MR

[4] Arnold V.I., Ilyashenko Yu.S., “Obyknovennye differentsialnye uravneniya”, Dinamicheskie sistemy–1, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 1, VINITI, M., 1985, 7–149 | MR

[5] Arnold V.I., Afraimovich V.S., Ilyashenko Yu.S., Shilnikov L.P., “Teoriya bifurkatsii”, Dinamicheskie sistemy–5, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 5, VINITI, M., 1986, 5–218 | MR

[6] Arnol'd V.I., “Contact structure, relaxational oscillations and singular points of implicit differential equations”, Global analysis—studies and applications III, Lect. Notes Math., 1334, Springer, Berlin, 1988, 173–179 | MR

[7] Garcia R., Sotomayor J., “Structural stability of parabolic lines and periodic asymptotic lines”, Mat. Contemp., 12 (1997), 83–102 | MR | Zbl

[8] Garcia R., Gutierrez C., Sotomayor J., “Structural stability of asymptotic lines on surfaces immersed in $\mathbb R^3$”, Bull. sci. math., 123 (1999), 599–622 | DOI | MR

[9] Davydov A.A., “Normalnaya forma uravneniya, ne razreshennogo otnositelno proizvodnoi, v okrestnosti ego osoboi tochki”, Funkts. analiz i ego pril., 19:2 (1985), 1–10 | MR | Zbl

[10] Davydov A.A., “Strukturnaya ustoichivost upravlyaemykh sistem na orientiruemykh poverkhnostyakh”, Mat. sb., 182:1 (1991), 3–35

[11] Davydov A.A., Qualitative theory of control systems, Transl. Math. Monogr., 141, Amer. Math. Soc., Providence (RI), 1994 | MR | Zbl

[12] Davydov A.A., “Lokalnaya upravlyaemost tipichnykh dinamicheskikh neravenstv na poverkhnostyakh”, Tr. MIAN, 209, 1995, 84–123 | MR | Zbl

[13] Davydov A.A., Rosales-Gonsales E., “Polnaya klassifikatsiya tipichnykh lineinykh differentsialnykh uravnenii vtorogo poryadka s chastnymi proizvodnymi na ploskosti”, DAN, 350:2 (1996), 151–154 | MR | Zbl

[14] Davydov A.A., “Controllability of generic control systems on surfaces”, Geometry of feedback and optimal control, Monogr. and Textbooks Pure and Appl. Math., 207, eds. B. Jakubczyk, W. Respondek, M. Dekker, New York, 1998, 111–163 | MR | Zbl

[15] Kuzmin A.G., “O povedenii kharakteristik uravneniya smeshannogo tipa vblizi linii vyrozhdeniya”, Dif. uravneniya, 17:11 (1981), 2052–2063 | MR

[16] Palis Zh., di Melu V., Geometricheskaya teoriya dinamicheskikh sistem, URSS, M., 1998

[17] Piliya A.D., Fedorov V.I., “Osobennosti polya elektromagnitnoi volny v kholodnoi plazme s dvumernoi neodnorodnostyu”, ZhETF, 60:1 (1971), 389–399

[18] Pkhakadze A.V., Shestakov A.A., “O klassifikatsii osobykh tochek differentsialnogo uravneniya, ne razreshennogo otnositelno proizvodnoi”, Mat. sb., 49:1 (1959), 3–12

[19] Takens F., “Constrained equations: a study of implicit differential equations and their discontinuous solutions”, Lect. Notes Math., 525, 1976, 143–234 | MR | Zbl