Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2007_256_a2, author = {C. Bonatti and V. Z. Grines and V. S. Medvedev and O. V. Pochinka}, title = {Bifurcations of {Morse--Smale} {Diffeomorphisms} with {Wildly} {Embedded} {Separatrices}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {54--69}, publisher = {mathdoc}, volume = {256}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2007_256_a2/} }
TY - JOUR AU - C. Bonatti AU - V. Z. Grines AU - V. S. Medvedev AU - O. V. Pochinka TI - Bifurcations of Morse--Smale Diffeomorphisms with Wildly Embedded Separatrices JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2007 SP - 54 EP - 69 VL - 256 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2007_256_a2/ LA - ru ID - TM_2007_256_a2 ER -
%0 Journal Article %A C. Bonatti %A V. Z. Grines %A V. S. Medvedev %A O. V. Pochinka %T Bifurcations of Morse--Smale Diffeomorphisms with Wildly Embedded Separatrices %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2007 %P 54-69 %V 256 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2007_256_a2/ %G ru %F TM_2007_256_a2
C. Bonatti; V. Z. Grines; V. S. Medvedev; O. V. Pochinka. Bifurcations of Morse--Smale Diffeomorphisms with Wildly Embedded Separatrices. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and optimization, Tome 256 (2007), pp. 54-69. http://geodesic.mathdoc.fr/item/TM_2007_256_a2/
[1] Banyaga A., “Sur la structure du groupe des difféomorphismes qui preservent une forme symplectique”, Comment. Math. Helv., 53 (1978), 174–227 | DOI | MR | Zbl
[2] Belitskii G.R., Normalnye formy, invarianty i lokalnye otobrazheniya, Nauk. dumka, Kiev, 1979 | MR
[3] Bonatti C., Grines V.Z., “Knots as topological invariants for gradient-like diffeomorphisms of the sphere $S^3$”, J. Dyn. and Control Syst., 6:4 (2000), 579–602 | DOI | MR | Zbl
[4] Bonatti Ch., Grines V., Pochinka O., On existence of a smooth arc joining “North pole–South pole” diffeomorphisms, Prepubl. Inst. Math. Bourgogne, 2006 \href{http://math.u-bourgogne.fr/topologie/prepub/bifs_4.pdf} {http://math.u-bourgogne.fr/topol
[5] Cerf J., Sur les difféomorphismes de la sphère de dimension trois ($\Gamma_4=0$), Lect. Notes Math., 53, Springer, Berlin, 1968 | MR | Zbl
[6] Kirby R.C., Siebenmann L.C., Foundational essays on topological manifolds, smoothings, and triangulations, Ann. Math. Stud., 88, Princeton Univ. Press, Princeton (NJ), 1977 | MR | Zbl
[7] Laudenbach F., Topologie de la dimension trois: homotopie et isotopie, Astérisque, 12, Centre Math. Ecole Polytech., Paris, 1974 | MR
[8] Matsumoto S., “There are two isotopic Morse–Smale diffeomorphism which cannot be joined by simple arcs”, Invent. math., 51 (1979), 1–7 | DOI | MR | Zbl
[9] Milnor Dzh., “O mnogoobraziyakh, gomeomorfnykh semimernoi sfere”, Matematika, 1:3 (1957), 35–42
[10] Milnor Dzh., Teorema ob $h$-kobordizme, Mir, M., 1969 | MR
[11] Milnor Dzh., Uolles A., Differentsialnaya topologiya: Nachalnyi kurs, Mir, M., 1972 | MR | Zbl
[12] Newhouse S., Peixoto M.M., “There is a simple arc joining any two Morse–Smale flows”, Astérisque, 31, 1976, 15–41 | MR
[13] Palis Zh., di Melu V., Geometricheskaya teoriya dinamicheskikh sistem, Mir, M., 1986 | MR
[14] Palis J., Pugh C.C., “Fifty problems in dynamical systems”, Lect. Notes Math., 468, 1975, 345–353 | MR | Zbl
[15] Pixton D., “Wild unstable manifolds”, Topology, 16:2 (1977), 167–172 | DOI | MR | Zbl
[16] Shilnikov L.P., Shilnikov A.L., Turaev D.V., Chua L., Metody kachestvennoi teorii v nelineinoi dinamike, ch. 1, In-t kompyut. issled., Moskva–Izhevsk, 2004