A Dynamical Approach to Accelerating Numerical Integration with Equidistributed Points
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and optimization, Tome 256 (2007), pp. 290-304

Voir la notice de l'article provenant de la source Math-Net.Ru

We show how ideas originating in the theory of dynamical systems inspire a new approach to numerical integration of functions. Any Lebesgue integral can be approximated by a sequence of integrals with respect to equidistributions, i.e. evenly weighted discrete probability measures concentrated on an equidistributed set. We prove that, in the case where the integrand is real analytic, suitable linear combinations of these equidistributions lead to a significant acceleration in the rate of convergence of the approximate integral. In particular, the rate of convergence is faster than that of any Newton–Cotes rule.
@article{TM_2007_256_a15,
     author = {O. Jenkinson and M. Pollicott},
     title = {A {Dynamical} {Approach} to {Accelerating} {Numerical} {Integration} with {Equidistributed} {Points}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {290--304},
     publisher = {mathdoc},
     volume = {256},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2007_256_a15/}
}
TY  - JOUR
AU  - O. Jenkinson
AU  - M. Pollicott
TI  - A Dynamical Approach to Accelerating Numerical Integration with Equidistributed Points
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2007
SP  - 290
EP  - 304
VL  - 256
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2007_256_a15/
LA  - en
ID  - TM_2007_256_a15
ER  - 
%0 Journal Article
%A O. Jenkinson
%A M. Pollicott
%T A Dynamical Approach to Accelerating Numerical Integration with Equidistributed Points
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2007
%P 290-304
%V 256
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2007_256_a15/
%G en
%F TM_2007_256_a15
O. Jenkinson; M. Pollicott. A Dynamical Approach to Accelerating Numerical Integration with Equidistributed Points. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and optimization, Tome 256 (2007), pp. 290-304. http://geodesic.mathdoc.fr/item/TM_2007_256_a15/