Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2007_256_a15, author = {O. Jenkinson and M. Pollicott}, title = {A {Dynamical} {Approach} to {Accelerating} {Numerical} {Integration} with {Equidistributed} {Points}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {290--304}, publisher = {mathdoc}, volume = {256}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TM_2007_256_a15/} }
TY - JOUR AU - O. Jenkinson AU - M. Pollicott TI - A Dynamical Approach to Accelerating Numerical Integration with Equidistributed Points JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2007 SP - 290 EP - 304 VL - 256 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2007_256_a15/ LA - en ID - TM_2007_256_a15 ER -
%0 Journal Article %A O. Jenkinson %A M. Pollicott %T A Dynamical Approach to Accelerating Numerical Integration with Equidistributed Points %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2007 %P 290-304 %V 256 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2007_256_a15/ %G en %F TM_2007_256_a15
O. Jenkinson; M. Pollicott. A Dynamical Approach to Accelerating Numerical Integration with Equidistributed Points. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and optimization, Tome 256 (2007), pp. 290-304. http://geodesic.mathdoc.fr/item/TM_2007_256_a15/
[1] Bandtlow O., Jenkinson O., Explicit eigenvalue estimates for transfer operators acting on spaces of holomorphic functions, Preprint http://www.maths.qmul.ac.uk/~omj
[2] Cowen C.C., MacCluer B.D., Composition operators on spaces of analytic functions, CRC Press, Boca Raton (FL), 1995 | MR | Zbl
[3] Gohberg I., Goldberg S., Kaashoek M.A., Classes of linear operators, v. 1, Birkhäuser, Basel, 1990 | MR
[4] Jenkinson O., Pollicott M., “Orthonormal expansions of invariant densities for expanding maps”, Adv. Math., 192 (2005), 1–34 | DOI | MR | Zbl
[5] Kato T., Perturbation theory for linear operators, Grundl. Math. Wiss., 132, Springer, Berlin etc., 1966 | Zbl
[6] Lubotzky A., Phillips R., Sarnak P., “Hecke operators and distributing points on the sphere. I”, Commun. Pure and Appl. Math., 39, Suppl. (1986), S149–S186 | DOI | MR | Zbl
[7] Mayer D.H., “On a $\zeta$ function related to the continued fraction transformation”, Bull. Soc. math. France, 104 (1976), 195–203 | MR | Zbl
[8] Pietsch A., Eigenvalues and $s$-numbers, Cambridge Univ. Press, Cambridge, 1987 | MR | Zbl
[9] Pinkus A., $n$-Widths in approximation theory, Springer, Berlin, 1985 | MR
[10] Ruelle D., “An extension of the theory of Fredholm determinants”, Publ. Math. IHES, 72 (1990), 175–193 | MR | Zbl
[11] Simon B., Trace ideals and their applications, LMS Lect. Note Ser., 35, Cambridge Univ. Press, Cambridge, 1979 | MR | Zbl
[12] Spivak M., A comprehensive introduction to differential geometry, 2nd ed., Publish or Perish, Berkeley, 1979
[13] Stoer J., Bulirsch R., Introduction to numerical analysis, 2nd ed., Springer, New York, 1993 | MR