A Method of Graph Transformation Type for Numerical Simulation of Invariant Manifolds
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and optimization, Tome 256 (2007), pp. 237-251.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of numerical projection onto local stable and local unstable manifolds defined in a neighborhood of a hyperbolic-type trajectory. We propose effective iteration algorithms, prove their convergence, and present the results of numerical calculations for two-dimensional equations of Navier–Stokes type.
@article{TM_2007_256_a11,
     author = {A. A. Kornev},
     title = {A {Method} of {Graph} {Transformation} {Type} for {Numerical} {Simulation} of {Invariant} {Manifolds}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {237--251},
     publisher = {mathdoc},
     volume = {256},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2007_256_a11/}
}
TY  - JOUR
AU  - A. A. Kornev
TI  - A Method of Graph Transformation Type for Numerical Simulation of Invariant Manifolds
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2007
SP  - 237
EP  - 251
VL  - 256
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2007_256_a11/
LA  - ru
ID  - TM_2007_256_a11
ER  - 
%0 Journal Article
%A A. A. Kornev
%T A Method of Graph Transformation Type for Numerical Simulation of Invariant Manifolds
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2007
%P 237-251
%V 256
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2007_256_a11/
%G ru
%F TM_2007_256_a11
A. A. Kornev. A Method of Graph Transformation Type for Numerical Simulation of Invariant Manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and optimization, Tome 256 (2007), pp. 237-251. http://geodesic.mathdoc.fr/item/TM_2007_256_a11/

[1] Anosov D.V., Geodezicheskie potoki na zamknutykh rimanovykh mnogoobraziyakh otritsatelnoi krivizny, Tr. MIAN, 90, Nauka, M., 1967 | MR

[2] Anosov D.V., “Mnogomernyi analog odnoi teoremy Adamara”, Nauch. dokl. vyssh. shk. Fiz.-mat. nauki, no. 1, 1959, 3–12 | Zbl

[3] Pesin Ya.B., “Kharakteristicheskie pokazateli Lyapunova i gladkaya ergodicheskaya teoriya”, UMN, 32:4 (1977), 55–112 | MR | Zbl

[4] Ladyzhenskaya O.A., Solonnikov V.A., “O printsipe linearizatsii i invariantnykh mnogoobraziyakh dlya zadach magnitnoi gidrodinamiki”, Zap. nauch. sem. LOMI, 38 (1973), 46–93 | Zbl

[5] Kornev A.A., “Metod asimptoticheskoi stabilizatsii po nachalnym dannym k zadannoi traektorii”, ZhVMiMF, 46:1 (2006), 37–51 | MR | Zbl

[6] Shilnikov L.P., Shilnikov A.L., Turaev D.V., Chua L., Metody kachestvennoi teorii nelineinykh sistem, ch. 1, In-t kompyut. issled., Moskva–Izhevsk, 2004

[7] Kornev A.A., “Klassifikatsiya metodov priblizhennogo proektirovaniya na ustoichivoe mnogoobrazie”, DAN, 400:6 (2005), 736–738 | MR

[8] Kostin I.N., “Rate of attraction to a non-hyperbolic attractor”, Asympt. Anal., 16 (1998), 203–222 | MR | Zbl

[9] Lebedev V.I., “Raznostnye analogi ortogonalnykh razlozhenii, osnovnykh differentsialnykh operatorov i nekotorykh kraevykh zadach matematicheskoi fiziki. I, II”, ZhVMiMF, 4:3 (1964), 449–465 ; 4, 649–659 | MR | Zbl

[10] Fursikov A.V., “Realnye protsessy i realizuemost metoda stabilizatsii sistemy Nave–Stoksa posredstvom upravleniya s obratnoi svyazyu s granitsy oblasti”, Nelineinye zadachi matematicheskoi fiziki i smezhnye voprosy. II, Mezhdunar. mat. ser., 2, Tamara Rozhkovskaya, Novosibirsk, 2002, 127–164 | MR

[11] Chizhonkov E.V., “Chislennye aspekty odnogo metoda stabilizatsii”, Tr. Mat. tsentra im. N.I. Lobachevskogo. Kazan, 22 (2005), 71–120

[12] Ladyzhenskaya O.A., “O dinamicheskoi sisteme, porozhdaemoi uravneniyami Nave–Stoksa”, Zap. nauch. sem. LOMI, 27 (1972), 91–115 | Zbl

[13] Babin A.V., Vishik M.I., Attraktory evolyutsionnykh uravnenii, Nauka, M., 1989 | MR | Zbl

[14] Ladyzhenskaya O.A., “O nakhozhdenii globalnykh minimalnykh attraktorov dlya uravnenii Nave–Stoksa i nekotorykh drugikh uravnenii v chastnykh proizvodnykh”, UMN, 42:6 (1987), 25–60 | MR | Zbl

[15] Guckenheimer J., Vladimirsky A., “A fast method for approximating manifolds”, SIAM J. Appl. Dyn. Syst., 3:3 (2004), 232–260 | DOI | MR | Zbl