Necessary Conditions for an Extremum in a Mathematical Programming Problem
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and optimization, Tome 256 (2007), pp. 6-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

For minimization problems with equality and inequality constraints, first- and second-order necessary conditions for a local extremum are presented. These conditions apply when the constraints do not satisfy the traditional regularity assumptions. The approach is based on the concept of 2-regularity; it unites and generalizes the authors' previous studies based on this concept.
@article{TM_2007_256_a0,
     author = {E. R. Avakov and A. V. Arutyunov and A. F. Izmailov},
     title = {Necessary {Conditions} for an {Extremum} in a {Mathematical} {Programming} {Problem}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {6--30},
     publisher = {mathdoc},
     volume = {256},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2007_256_a0/}
}
TY  - JOUR
AU  - E. R. Avakov
AU  - A. V. Arutyunov
AU  - A. F. Izmailov
TI  - Necessary Conditions for an Extremum in a Mathematical Programming Problem
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2007
SP  - 6
EP  - 30
VL  - 256
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2007_256_a0/
LA  - ru
ID  - TM_2007_256_a0
ER  - 
%0 Journal Article
%A E. R. Avakov
%A A. V. Arutyunov
%A A. F. Izmailov
%T Necessary Conditions for an Extremum in a Mathematical Programming Problem
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2007
%P 6-30
%V 256
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2007_256_a0/
%G ru
%F TM_2007_256_a0
E. R. Avakov; A. V. Arutyunov; A. F. Izmailov. Necessary Conditions for an Extremum in a Mathematical Programming Problem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and optimization, Tome 256 (2007), pp. 6-30. http://geodesic.mathdoc.fr/item/TM_2007_256_a0/

[1] Ioffe A.D., Tikhomirov V.M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl

[2] Alekseev V.M., Tikhomirov V.M., Fomin S.V., Optimalnoe upravlenie, Nauka, M., 1979

[3] Bonnans J.F., Shapiro A., Perturbation analysis of optimization problems, Springer, New York, 2000 | MR

[4] Avakov E.R., “Usloviya ekstremuma dlya gladkikh zadach s ogranicheniyami tipa ravenstv”, ZhVMiMF, 25:5 (1985), 680–693 | MR | Zbl

[5] Avakov E.R., “Neobkhodimye usloviya ekstremuma dlya gladkikh anormalnykh zadach s ogranicheniyami tipa ravenstv i neravenstv”, Mat. zametki, 45:6 (1989), 3–11 | MR | Zbl

[6] Arutyunov A.V., Usloviya ekstremuma. Anormalnye i vyrozhdennye zadachi, Faktorial, M., 1997 | MR | Zbl

[7] Avakov E.R., “Neobkhodimye usloviya pervogo poryadka dlya anormalnykh zadach variatsionnogo ischisleniya”, Dif. uravneniya, 27:5 (1991), 739–745 | MR | Zbl

[8] Avakov E.R., “Neobkhodimye usloviya minimuma dlya neregulyarnykh zadach v banakhovykh prostranstvakh. Printsip maksimuma dlya anormalnykh zadach optimalnogo upravleniya”, Tr. MIAN, 185, 1988, 3–29 | MR

[9] Izmailov A.F., Solodov M.V., “The theory of 2-regularity for mappings with Lipschitzian derivatives and its applications to optimality conditions”, Math. Oper. Res., 27 (2002), 614–635 | DOI | MR | Zbl

[10] Avakov E.R., Arutyunov A.V., “Teorema ob obratnoi funktsii i usloviya ekstremuma dlya anormalnykh zadach s nezamknutym obrazom”, Mat. sb., 196:9 (2005), 3–22 | MR | Zbl

[11] Izmailov A.F., “Usloviya optimalnosti dlya vyrozhdennykh ekstremalnykh zadach s ogranicheniyami tipa neravenstv”, ZhVMiMF, 34:6 (1994), 837–854 | MR | Zbl

[12] Izmailov A.F., “K usloviyam optimalnosti v ekstremalnykh zadachakh s neregulyarnymi ogranicheniyami-neravenstvami”, Mat. zametki, 66:1 (1999), 89–101 | MR | Zbl

[13] Milyutin A.A., Dmitruk A.V., Osmolovskii N.P., Printsip maksimuma v optimalnom upravlenii, Izd-vo Tsentra prikl. issled. pri mekh.-mat. fakultete MGU, M., 2004

[14] Sukharev A.G., Timokhov A.V., Fedorov V.V., Kurs metodov optimizatsii, Nauka, M., 1986 | MR | Zbl

[15] Kolmogorov A.N., Fomin S.V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1990

[16] Khelemskii A.Ya., Lektsii po funktsionalnomu analizu, MTsNMO, M., 2004

[17] Arutyunov A.V., “Nakryvanie nelineinykh otobrazhenii na konuse v okrestnosti anormalnoi tochki”, Mat. zametki, 77:4 (2005), 483–497 | MR | Zbl

[18] Robinson S.M., “Stability theory for systems of inequalities. II: Differentiable nonlinear systems”, SIAM J. Numer. Anal., 13 (1976), 497–513 | DOI | MR | Zbl

[19] Magnus R.J., “On the local structure of the zero-set of a Banach space valued mapping”, J. Funct. Anal., 22 (1976), 58–72 | DOI | MR | Zbl

[20] Levitin E.S., Milyutin A.A., Osmolovskii N.P., “Usloviya vysshikh poryadkov lokalnogo minimuma v zadachakh s ogranicheniyami”, UMN, 33:6 (1978), 84–148 | MR