Indefinite Sturm–Liouville Problem for Some Classes of Self-similar Singular Weights
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 88-98
Cet article a éte moissonné depuis la source Math-Net.Ru
We continue studying the asymptotics of the spectrum for the boundary value problem $-y''-\lambda \rho y=0$, $y(0)=y(1)=0$, where $\rho $ is a function in the space $\mathring W_{\!2}^{-1}[0,1]$ with a self-similar primitive. The cases of nonarithmetic and degenerate arithmetic self-similarity of such a primitive are considered.
@article{TM_2006_255_a6,
author = {A. A. Vladimirov and I. A. Sheipak},
title = {Indefinite {Sturm{\textendash}Liouville} {Problem} for {Some} {Classes} of {Self-similar} {Singular} {Weights}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {88--98},
year = {2006},
volume = {255},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2006_255_a6/}
}
TY - JOUR AU - A. A. Vladimirov AU - I. A. Sheipak TI - Indefinite Sturm–Liouville Problem for Some Classes of Self-similar Singular Weights JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2006 SP - 88 EP - 98 VL - 255 UR - http://geodesic.mathdoc.fr/item/TM_2006_255_a6/ LA - ru ID - TM_2006_255_a6 ER -
A. A. Vladimirov; I. A. Sheipak. Indefinite Sturm–Liouville Problem for Some Classes of Self-similar Singular Weights. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 88-98. http://geodesic.mathdoc.fr/item/TM_2006_255_a6/
[1] Solomyak M., Verbitsky E., “On a spectral problem related to self-similar measures”, Bull. London Math. Soc., 27 (1995), 242–248 | DOI | MR | Zbl
[2] Levitin M., Vassiliev D., “Spectral asymptotics, renewal theorem, and the Berry conjecture for a class of fractals”, Proc. London Math. Soc., 72 (1996), 188–214 | DOI | MR | Zbl
[3] Vladimirov A.A., Sheipak I.A., “Samopodobnye funktsii v prostranstve $L_2[0,1]$ i zadacha Shturma–Liuvillya s singulyarnym indefinitnym vesom”, Mat. sb., 197:11 (2006), 13–30 | MR | Zbl
[4] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, t. 2, 3-e izd., Mir, M., 1984