Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2006_255_a6, author = {A. A. Vladimirov and I. A. Sheipak}, title = {Indefinite {Sturm--Liouville} {Problem} for {Some} {Classes} of {Self-similar} {Singular} {Weights}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {88--98}, publisher = {mathdoc}, volume = {255}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2006_255_a6/} }
TY - JOUR AU - A. A. Vladimirov AU - I. A. Sheipak TI - Indefinite Sturm--Liouville Problem for Some Classes of Self-similar Singular Weights JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2006 SP - 88 EP - 98 VL - 255 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2006_255_a6/ LA - ru ID - TM_2006_255_a6 ER -
%0 Journal Article %A A. A. Vladimirov %A I. A. Sheipak %T Indefinite Sturm--Liouville Problem for Some Classes of Self-similar Singular Weights %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2006 %P 88-98 %V 255 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2006_255_a6/ %G ru %F TM_2006_255_a6
A. A. Vladimirov; I. A. Sheipak. Indefinite Sturm--Liouville Problem for Some Classes of Self-similar Singular Weights. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 88-98. http://geodesic.mathdoc.fr/item/TM_2006_255_a6/
[1] Solomyak M., Verbitsky E., “On a spectral problem related to self-similar measures”, Bull. London Math. Soc., 27 (1995), 242–248 | DOI | MR | Zbl
[2] Levitin M., Vassiliev D., “Spectral asymptotics, renewal theorem, and the Berry conjecture for a class of fractals”, Proc. London Math. Soc., 72 (1996), 188–214 | DOI | MR | Zbl
[3] Vladimirov A.A., Sheipak I.A., “Samopodobnye funktsii v prostranstve $L_2[0,1]$ i zadacha Shturma–Liuvillya s singulyarnym indefinitnym vesom”, Mat. sb., 197:11 (2006), 13–30 | MR | Zbl
[4] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, t. 2, 3-e izd., Mir, M., 1984