On Recovering Differential Systems on a~Finite Interval from Spectra
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 273-287.

Voir la notice de l'article provenant de la source Math-Net.Ru

Inverse spectral problems are studied for non-self-adjoint systems of ordinary differential equations on a finite interval. We establish properties of spectral characteristics and provide a procedure for constructing the solution of the inverse problem of recovering the coefficients of differential systems from given spectra.
@article{TM_2006_255_a20,
     author = {V. A. Yurko},
     title = {On {Recovering} {Differential} {Systems} on {a~Finite} {Interval} from {Spectra}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {273--287},
     publisher = {mathdoc},
     volume = {255},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2006_255_a20/}
}
TY  - JOUR
AU  - V. A. Yurko
TI  - On Recovering Differential Systems on a~Finite Interval from Spectra
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2006
SP  - 273
EP  - 287
VL  - 255
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2006_255_a20/
LA  - ru
ID  - TM_2006_255_a20
ER  - 
%0 Journal Article
%A V. A. Yurko
%T On Recovering Differential Systems on a~Finite Interval from Spectra
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2006
%P 273-287
%V 255
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2006_255_a20/
%G ru
%F TM_2006_255_a20
V. A. Yurko. On Recovering Differential Systems on a~Finite Interval from Spectra. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 273-287. http://geodesic.mathdoc.fr/item/TM_2006_255_a20/

[1] Yurko V., Method of spectral mappings in the inverse problem theory, Inverse and Ill-Posed Probl. Ser., VSP, Utrecht, 2002 | MR | Zbl

[2] Yurko V.A., Inverse spectral problems for differential operators and their applications, Gordon and Breach, Amsterdam, 2000 | MR | Zbl

[3] Yurko V.A., Obratnye spektralnye zadachi i ikh prilozheniya, Izd-vo Saratov. ped. in-ta, Saratov, 2001

[4] Levitan B.M., Sargsyan I.S., Operatory Shturma–Liuvillya i Diraka, Nauka, M., 1988 | MR | Zbl

[5] Marchenko V.A., Operatory Shturma–Liuvillya i ikh prilozheniya, Nauk. dumka, Kiev, 1977 | MR

[6] Levitan B.M., Obratnye zadachi Shturma–Liuvillya, Nauka, M., 1984 | MR

[7] Freiling G., Yurko V.A., Inverse Sturm–Liouville problems and their applications, Nova Sci. Publ., Huntington (NY), 2001 | MR | Zbl

[8] Shabat A.B., “Obratnaya zadacha rasseyaniya”, Dif. uravneniya, 15:10 (1979), 1824–1834 | MR | Zbl

[9] Yurko V.A., “Obratnaya zadacha dlya sistem differentsialnykh uravnenii s nelineinoi zavisimostyu ot spektralnogo parametra”, Dif. uravneniya, 33:3 (1997), 390–395 | MR | Zbl

[10] Malamud M.M., “Voprosy edinstvennosti v obratnykh zadachakh dlya sistem differentsialnykh uravnenii na konechnom intervale”, Tr. Mosk. mat. o-va, 60 (1999), 199–258 | MR | Zbl

[11] Sakhnovich L.A., Spectral theory of canonical differential systems. Method of operator identities, Operator Theory: Adv. and Appl., 107, Birkhäuser, Basel, 1999 | MR | Zbl

[12] Beals R., Coifman R.R., “Scattering and inverse scattering for first order systems”, Commun. Pure and Appl. Math., 37 (1984), 39–90 | DOI | MR | Zbl

[13] Yurko V.A., “Obratnaya spektralnaya zadacha dlya singulyarnykh nesamosopryazhennykh differentsialnykh sistem”, Mat. sb., 195:12 (2004), 123–156 | MR | Zbl

[14] Yurko V.A., “Obratnaya zadacha dlya differentsialnykh sistem na konechnom intervale v sluchae kratnykh kornei kharakteristicheskogo uravneniya”, Dif. uravneniya, 41:6 (2005), 781–786 | MR | Zbl

[15] Tamarkin Ya.D., O nekotorykh obschikh zadachakh teorii obyknovennykh lineinykh differentsialnykh uravnenii, Petrograd, 1917 | Zbl

[16] Rasulov M.L., Metod konturnogo integrala, Nauka, M., 1964 | MR | Zbl

[17] Vagabov A.I., “Ob utochnenii odnoi asimptoticheskoi teoremy Tamarkina”, Dif. uravneniya, 29:1 (1993), 41–49 | MR | Zbl

[18] Rykhlov V.S., “Asymptotical formulas for solutions of linear differential systems of the first order”, Results Math., 36:3–4 (1999), 342–353 | MR | Zbl

[19] Bellmann R., Cooke K., Differential–difference equations, Acad. Press, New York, 1963 | MR