Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2006_255_a18, author = {B. Ruf}, title = {On {Elliptic} {Equations} and {Systems} with {Critical} {Growth} in {Dimension} {Two}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {246--255}, publisher = {mathdoc}, volume = {255}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TM_2006_255_a18/} }
B. Ruf. On Elliptic Equations and Systems with Critical Growth in Dimension Two. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 246-255. http://geodesic.mathdoc.fr/item/TM_2006_255_a18/
[1] Adams R.A., Fournier J.J.F., Sobolev spaces, 2nd ed., Acad. Press, New York, 2003 | MR | Zbl
[2] Adimurthi., “Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the $n$-Laplacian”, Ann. Scuola Norm. Super. Pisa., 17 (1990), 393–413 | MR | Zbl
[3] Ambrosetti A., Rabinowitz P.H., “Dual variational methods in critical point theory and applications”, J. Funct. Anal., 14 (1973), 349–381 | DOI | MR | Zbl
[4] Adimurthi, Yadava S.L., “Multiplicity results for semilinear elliptic equations in a bounded domain of $\mathbb R^2$ involving critical exponent”, Ann. Scuola Norm. Super. Pisa., 17 (1990), 481–504 | MR | Zbl
[5] Brezis H., “Laser beams and limiting cases of Sobolev inequalities”, Nonlinear partial differential equations and their applications, Collège de France Seminar. V. 2, Pitman Res. Notes Math., 60, eds. H. Brezis, J.L. Lions, Pitman, Boston, 1982, 86–97 | MR
[6] Brezis H., Nirenberg L., “Positive solutions of nonlinear elliptic problems involving critical Sobolev exponents”, Commun. Pure and Appl. Math., 36 (1983), 437–477 | DOI | MR | Zbl
[7] Brezis H., Wainger S., “A note on limiting cases of Sobolev embeddings and convolution inequalities”, Commun. Part. Diff. Equat., 5 (1980), 773–789 | DOI | MR | Zbl
[8] Carleson L., Chang S.-Y.A., “On the existence of an extremal function for an inequality of J. Moser”, Bull. sci. math. Sér. 2, 110 (1986), 113–127 | MR | Zbl
[9] de Figueiredo D.G., Felmer P.L., “On superquadratic elliptic systems”, Trans. Amer. Math. Soc., 343 (1994), 99–116 | DOI | MR | Zbl
[10] de Figueiredo D.G., do Ó J.M., Ruf B., “On an inequality by N. Trudinger and J. Moser and related elliptic equations”, Commun. Pure and Appl. Math., 55 (2002), 135–152 | DOI | MR | Zbl
[11] de Figueiredo D.G., do Ó J.M., Ruf B., “Critical and subcritical elliptic systems in dimension two”, Indiana Univ. Math. J., 53 (2004), 1037–1054 | DOI | MR | Zbl
[12] de Figueiredo D.G., do Ó J.M., Ruf B., “An Orlicz-space approach to superlinear elliptic systems”, J. Funct. Anal., 224 (2005), 471–496 | DOI | MR | Zbl
[13] de Figueiredo D.G., Ruf B., “Existence and nonexistence of solutions for elliptic equations with critical growth in $\mathbb R^2$”, Commun. Pure and Appl. Math., 48 (1995), 639–655 | DOI | MR | Zbl
[14] de Figueiredo D.G., Miyagaki O.H., Ruf B., “Elliptic equations in $\mathbb R^2$ with nonlinearities in the critical growth range”, Calc. Var. and Part. Diff. Equat., 3 (1995), 139–153 | DOI | MR | Zbl
[15] Flucher M., “Extremal functions for the Trudinger–Moser inequality in 2 dimensions”, Comment. Math. Helv., 67 (1992), 471–497 | DOI | MR | Zbl
[16] Gidas B., Ni W.N., Nirenberg L., “Symmetry and related properties via the maximum principle”, Commun. Math. Phys., 68 (1979), 209–243 | DOI | MR | Zbl
[17] Hulshof J., van der Vorst R., “Differential systems with strongly indefinite variational structure”, J. Funct. Anal., 114 (1993), 32–58 | DOI | MR | Zbl
[18] Lions P.-L., “The concentration–compactness principle in the calculus of variations. The limit case. I”, Rev. Mat. Iberoamer., 1 (1985), 145–201 | MR | Zbl
[19] Moser J., “A sharp form of an inequality by Trudinger”, Indiana Univ. Math. J., 20 (1971), 1077–1092 | DOI | MR
[20] Pokhozhaev S.I., “O teoreme vlozheniya Soboleva v sluchae $pl=n$”, Dokl. nauch.-tekhn. konf. MEI. Sekts. mat., Izd. MEI, M., 1965, 158–170
[21] Pokhozhaev S.I., “O sobstvennykh funktsiyakh uravneniya $\Delta u+\lambda f(u)=0$”, DAN SSSR, 165:1 (1965), 36–39 | MR | Zbl
[22] Rabinowitz P.H., Minimax methods in critical point theory with applications to differential equations, CBMS Reg. Conf. Ser. Math., 65, Amer. Math. Soc., Providence (RI), 1986 | MR
[23] Strichartz R.S., “A note on Trudinger's extension of Sobolev's inequalities”, Indiana Univ. Math. J., 21 (1972), 841–842 | DOI | MR | Zbl
[24] Talenti G., “Best constants in Sobolev inequality”, Ann. Mat. Pura ed Appl., 110 (1976), 353–372 | DOI | MR | Zbl
[25] Trudinger N.S., “On imbeddings into Orlicz spaces and some applications”, J. Math. and Mech., 17 (1967), 473–483 | MR | Zbl