Hardy's Inequality with Three Measures
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 233-245.

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary and sufficient conditions are obtained for the fulfillment of a Hardy inequality with three $\sigma$-finite measures on the number axis.
@article{TM_2006_255_a17,
     author = {D. V. Prokhorov},
     title = {Hardy's {Inequality} with {Three} {Measures}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {233--245},
     publisher = {mathdoc},
     volume = {255},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2006_255_a17/}
}
TY  - JOUR
AU  - D. V. Prokhorov
TI  - Hardy's Inequality with Three Measures
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2006
SP  - 233
EP  - 245
VL  - 255
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2006_255_a17/
LA  - ru
ID  - TM_2006_255_a17
ER  - 
%0 Journal Article
%A D. V. Prokhorov
%T Hardy's Inequality with Three Measures
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2006
%P 233-245
%V 255
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2006_255_a17/
%G ru
%F TM_2006_255_a17
D. V. Prokhorov. Hardy's Inequality with Three Measures. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 233-245. http://geodesic.mathdoc.fr/item/TM_2006_255_a17/

[1] Opic B., Kufner A., Hardy-type inequalities, Pitman Res. Notes Math., 219, Longman Sci. Tech., Harlow, 1990 | MR | Zbl

[2] Kufner A., Persson L.-E., Weighted inequalities of Hardy type, World Sci., Singapore, 2003 | MR | Zbl

[3] Mazya V.G., Prostranstva S.L. Soboleva, Izd-vo LGU, L., 1985, 416 pp. | MR

[4] Sinnamon G., “Hardy's inequality and monotonicity”, Function spaces, differential operators and nonlinear analysis, Proc. Conf. (Milovy, Czech Republ., May 28–June 2, 2004), Math. Inst. Acad. Sci. Czech Republ., Prague, 2005, 292–310

[5] Khardi G.G., Littlvud Dzh.E., Polia G., Neravenstva, Izd-vo inostr. lit., M., 1948, 456 pp.

[6] Danford N., Shvarts Dzh., Lineinye operatory. T. 1: Obschaya teoriya, Izd-vo inostr. lit., M., 1962, 896 pp.

[7] Rudin W., Real and complex analysis, McGraw-Hill, New York, 1987 | MR | Zbl