Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2006_255_a14, author = {E. D. Nursultanov}, title = {Nikol'skii's {Inequality} for {Different} {Metrics} and {Properties} of the {Sequence} of {Norms} of the {Fourier} {Sums} of a {Function} in the {Lorentz} {Space}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {197--215}, publisher = {mathdoc}, volume = {255}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2006_255_a14/} }
TY - JOUR AU - E. D. Nursultanov TI - Nikol'skii's Inequality for Different Metrics and Properties of the Sequence of Norms of the Fourier Sums of a Function in the Lorentz Space JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2006 SP - 197 EP - 215 VL - 255 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2006_255_a14/ LA - ru ID - TM_2006_255_a14 ER -
%0 Journal Article %A E. D. Nursultanov %T Nikol'skii's Inequality for Different Metrics and Properties of the Sequence of Norms of the Fourier Sums of a Function in the Lorentz Space %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2006 %P 197-215 %V 255 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2006_255_a14/ %G ru %F TM_2006_255_a14
E. D. Nursultanov. Nikol'skii's Inequality for Different Metrics and Properties of the Sequence of Norms of the Fourier Sums of a Function in the Lorentz Space. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 197-215. http://geodesic.mathdoc.fr/item/TM_2006_255_a14/
[1] Blozinski A.P., “Multivariate rearrangements and Banach function spaces with mixed norms”, Trans. Amer. Math. Soc., 263:1 (1981), 149–167 | DOI | MR | Zbl
[2] Nursultanov E.D., “Setevye prostranstva i neravenstva tipa Khardi–Littlvuda”, Mat. sb., 189:3 (1998), 83–102 | MR | Zbl
[3] Nursultanov E.D., “O koeffitsientakh kratnykh ryadov Fure iz $L_p$-prostranstv”, Izv. RAN. Ser. mat., 64:1 (2000), 95–122 | MR | Zbl
[4] Nursultanov E.D., “Interpolyatsionnye teoremy dlya anizotropnykh funktsionalnykh prostranstv i ikh prilozheniya”, DAN, 394:1 (2004), 22–25 | MR | Zbl
[5] Neder L., “Über Koeffizientensumme einer beschrankten Potenzreihe”, Math. Ztschr., 11 (1921), 115–123 | DOI | MR | Zbl
[6] Busko E., “Fonctions continues et fonctions bornees non adherentes dans $L^\infty (T)$ à la suite de leurs sommes partielles de Fourier”, Stud. math., 34 (1970), 319–337 | MR | Zbl
[7] Oskolkov K.I., “Otsenka priblizheniya nepreryvnykh funktsii podposledovatelnostyami summ Fure”, Tr. MIAN, 134, 1975, 240–253 | MR | Zbl
[8] Nikolskii S.M., “Neravenstva dlya tselykh funktsii konechnoi stepeni i ikh primenenie v teorii differentsiruemykh funktsii mnogikh peremennykh”, Tr. MIAN, 38, 1951, 244–278
[9] Sherstneva L.A., “Neravenstva Nikolskogo dlya trigonometricheskikh polinomov v prostranstvakh Lorentsa”, Vestn. Mosk. un-ta. Matematika. Mekhanika, 1984, no. 4, 75–79 | MR | Zbl
[10] Temlyakov V.N., Priblizhenie funktsii s ogranichennoi smeshannoi proizvodnoi, Tr. MIAN, 178, Nauka, M., 1986, 113 pp. | MR | Zbl
[11] Berg I., Lëfstrëm I., Interpolyatsionnye prostranstva: Vvedenie, Mir, M., 1980 | MR
[12] Polia G., Sege G., Zadachi i teoremy iz analiza, t. 2, Nauka, M., 1978
[13] Rodin V.A., “Teorema Khardi–Littlvuda dlya kosinus-ryada v simmetrichnom prostranstve”, Mat. zametki, 20:2 (1976), 241–246 | MR | Zbl
[14] Nursultanov E.D., “Mnogoparametricheskii interpolyatsionnyi funktor i prostranstvo Lorentsa $L_{p\vec q}$, $\vec q=(q_1,\dots ,q_n)$”, Funkts. anal. i ego pril., 31:2 (1997), 79–82 | MR | Zbl
[15] Besov O.V., Ilin V.P., Nikolskii S.M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl
[16] Akishev G.A., “Neravenstvo raznykh metrik dlya trigonometricheskikh polinomov v prostranstve Lorentsa”, Ualikhanovskie chteniya–9, Mater. Mezhdunar. nauch.-praktich. konf. (g. Kokshetau, 2004 g.), 3–6