The Density of Separatrix Connections in the Space of Polynomial Foliations in~$\mathbb C\mathrm P^2$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Nonlinear analytic differential equations, Tome 254 (2006), pp. 181-191

Voir la notice de l'article provenant de la source Math-Net.Ru

A complex analog of the Hayashi connecting lemma is proved; namely, in the space of polynomial vector fields of degree higher than $1$ on the complex plane, the vector fields that have a common complex separatrix of two singular points are dense.
@article{TM_2006_254_a6,
     author = {D. S. Volk},
     title = {The {Density} of {Separatrix} {Connections} in the {Space} of {Polynomial} {Foliations} in~$\mathbb C\mathrm P^2$},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {181--191},
     publisher = {mathdoc},
     volume = {254},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2006_254_a6/}
}
TY  - JOUR
AU  - D. S. Volk
TI  - The Density of Separatrix Connections in the Space of Polynomial Foliations in~$\mathbb C\mathrm P^2$
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2006
SP  - 181
EP  - 191
VL  - 254
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2006_254_a6/
LA  - ru
ID  - TM_2006_254_a6
ER  - 
%0 Journal Article
%A D. S. Volk
%T The Density of Separatrix Connections in the Space of Polynomial Foliations in~$\mathbb C\mathrm P^2$
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2006
%P 181-191
%V 254
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2006_254_a6/
%G ru
%F TM_2006_254_a6
D. S. Volk. The Density of Separatrix Connections in the Space of Polynomial Foliations in~$\mathbb C\mathrm P^2$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Nonlinear analytic differential equations, Tome 254 (2006), pp. 181-191. http://geodesic.mathdoc.fr/item/TM_2006_254_a6/