Topology of Analytic Foliations in~$\mathbb C^2$. The Kupka--Smale Property
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Nonlinear analytic differential equations, Tome 254 (2006), pp. 162-180.

Voir la notice de l'article provenant de la source Math-Net.Ru

The topology of leaves of a generic analytic foliation on the complex plane is studied. It is proved that for a generic foliation all leaves are topological disks except for at most a countable number of topological cylinders. It is also shown that such foliations possess the Kupka–Smale property.
@article{TM_2006_254_a5,
     author = {T. S. Firsova},
     title = {Topology of {Analytic} {Foliations} in~$\mathbb C^2$. {The} {Kupka--Smale} {Property}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {162--180},
     publisher = {mathdoc},
     volume = {254},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2006_254_a5/}
}
TY  - JOUR
AU  - T. S. Firsova
TI  - Topology of Analytic Foliations in~$\mathbb C^2$. The Kupka--Smale Property
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2006
SP  - 162
EP  - 180
VL  - 254
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2006_254_a5/
LA  - ru
ID  - TM_2006_254_a5
ER  - 
%0 Journal Article
%A T. S. Firsova
%T Topology of Analytic Foliations in~$\mathbb C^2$. The Kupka--Smale Property
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2006
%P 162-180
%V 254
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2006_254_a5/
%G ru
%F TM_2006_254_a5
T. S. Firsova. Topology of Analytic Foliations in~$\mathbb C^2$. The Kupka--Smale Property. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Nonlinear analytic differential equations, Tome 254 (2006), pp. 162-180. http://geodesic.mathdoc.fr/item/TM_2006_254_a5/

[1] Arnold V.I., Afraimovich V.S., Ilyashenko Yu.S., Shilnikov L.P., “Teoriya bifurkatsii”, Dinamicheskie sistemy–5, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 5, VINITI, M., 1986, 5–218 | MR

[2] Gukenkheimer Dzh., Kholms F., Nelineinye kolebaniya, dinamicheskie sistemy i bifurkatsii vektornykh polei, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2002

[3] Ilyashenko Yu.S., “Topologiya fazovykh portretov analiticheskikh differentsialnykh uravnenii na kompleksnoi proektivnoi ploskosti”, Tr. sem. im. I.G. Petrovskogo, 4 (1978), 83–136 | MR | Zbl

[4] Ilyashenko Yu.S., “Sloeniya na analiticheskie krivye”, Mat. sb., 88:4 (1972), 558–577 | Zbl

[5] Petrovskii I.G., Landis E.M., “O chisle predelnykh tsiklov uravneniya $dy/dx=P(x,y)/Q(x,y)$, gde $P$ i $Q$ — mnogochleny 2-i stepeni”, Mat. sb., 37:2 (1955), 209–250 | MR | Zbl

[6] Chirka E.M., Kompleksnye analiticheskie mnozhestva, Nauka, M., 1985 | MR

[7] Khermander L., Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, Mir, M., 1968 | MR

[8] Buzzard G.T., “Kupka–Smale theorem for automorphisms of $\mathbb C^n$”, Duke Math. J., 93 (1998), 487–503 | DOI | MR | Zbl

[9] Buzzard G.T., Hruska S.L., Ilyashenko Yu., “Kupka–Smale theorem for polynomial automorphisms of $\mathbb C^2$ and persistence of heteroclinic intersections”, Invent. math., 161:1 (2005), 45–89 | DOI | MR | Zbl

[10] Chaperon M., “Generic complex flows”, Complex geometry II: Contemporary aspects of mathematics and physics, Hermann, Paris, 2004, 71–79 | MR | Zbl

[11] Helson H., Quigley F., “Existence of maximal ideals in algebras of continuous functions”, Proc. Amer. Math. Soc., 8 (1957), 115–119 | DOI | MR | Zbl

[12] Ilyashenko Yu.S., Pyartli A.S., “The monodromy group at infinity of a generic polynomial vector field on the complex projective plane”, Russ. J. Math. Phys., 2:3 (1994), 275–315 | MR | Zbl

[13] Ilyashenko Yu., “Centennial history of Hilbert's 16th problem”, Bull. Amer. Math. Soc., 39:3 (2002), 301–354 ; Ильяшенко Ю.С., “Столетняя история 16-й проблемы Гильберта”, Фундаментальная математика сегодня, МЦНМО, М., 2003, 135–189 | DOI | MR | Zbl | MR

[14] Richards I., “On the classification of noncompact surfaces”, Trans. Amer. Math. Soc., 106 (1963), 259–269 | DOI | MR | Zbl

[15] Stolzenberg G., “Uniform approximation on smooth curves”, Acta math., 115 (1966), 185–198 | DOI | MR | Zbl

[16] Wermer J., “The hull of a curve in $\mathbb C^n$”, Ann. Math. Ser. 2, 68:3 (1958), 550–561 | DOI | MR | Zbl