Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2006_254_a5, author = {T. S. Firsova}, title = {Topology of {Analytic} {Foliations} in~$\mathbb C^2$. {The} {Kupka--Smale} {Property}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {162--180}, publisher = {mathdoc}, volume = {254}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2006_254_a5/} }
TY - JOUR AU - T. S. Firsova TI - Topology of Analytic Foliations in~$\mathbb C^2$. The Kupka--Smale Property JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2006 SP - 162 EP - 180 VL - 254 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2006_254_a5/ LA - ru ID - TM_2006_254_a5 ER -
T. S. Firsova. Topology of Analytic Foliations in~$\mathbb C^2$. The Kupka--Smale Property. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Nonlinear analytic differential equations, Tome 254 (2006), pp. 162-180. http://geodesic.mathdoc.fr/item/TM_2006_254_a5/
[1] Arnold V.I., Afraimovich V.S., Ilyashenko Yu.S., Shilnikov L.P., “Teoriya bifurkatsii”, Dinamicheskie sistemy–5, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 5, VINITI, M., 1986, 5–218 | MR
[2] Gukenkheimer Dzh., Kholms F., Nelineinye kolebaniya, dinamicheskie sistemy i bifurkatsii vektornykh polei, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2002
[3] Ilyashenko Yu.S., “Topologiya fazovykh portretov analiticheskikh differentsialnykh uravnenii na kompleksnoi proektivnoi ploskosti”, Tr. sem. im. I.G. Petrovskogo, 4 (1978), 83–136 | MR | Zbl
[4] Ilyashenko Yu.S., “Sloeniya na analiticheskie krivye”, Mat. sb., 88:4 (1972), 558–577 | Zbl
[5] Petrovskii I.G., Landis E.M., “O chisle predelnykh tsiklov uravneniya $dy/dx=P(x,y)/Q(x,y)$, gde $P$ i $Q$ — mnogochleny 2-i stepeni”, Mat. sb., 37:2 (1955), 209–250 | MR | Zbl
[6] Chirka E.M., Kompleksnye analiticheskie mnozhestva, Nauka, M., 1985 | MR
[7] Khermander L., Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, Mir, M., 1968 | MR
[8] Buzzard G.T., “Kupka–Smale theorem for automorphisms of $\mathbb C^n$”, Duke Math. J., 93 (1998), 487–503 | DOI | MR | Zbl
[9] Buzzard G.T., Hruska S.L., Ilyashenko Yu., “Kupka–Smale theorem for polynomial automorphisms of $\mathbb C^2$ and persistence of heteroclinic intersections”, Invent. math., 161:1 (2005), 45–89 | DOI | MR | Zbl
[10] Chaperon M., “Generic complex flows”, Complex geometry II: Contemporary aspects of mathematics and physics, Hermann, Paris, 2004, 71–79 | MR | Zbl
[11] Helson H., Quigley F., “Existence of maximal ideals in algebras of continuous functions”, Proc. Amer. Math. Soc., 8 (1957), 115–119 | DOI | MR | Zbl
[12] Ilyashenko Yu.S., Pyartli A.S., “The monodromy group at infinity of a generic polynomial vector field on the complex projective plane”, Russ. J. Math. Phys., 2:3 (1994), 275–315 | MR | Zbl
[13] Ilyashenko Yu., “Centennial history of Hilbert's 16th problem”, Bull. Amer. Math. Soc., 39:3 (2002), 301–354 ; Ильяшенко Ю.С., “Столетняя история 16-й проблемы Гильберта”, Фундаментальная математика сегодня, МЦНМО, М., 2003, 135–189 | DOI | MR | Zbl | MR
[14] Richards I., “On the classification of noncompact surfaces”, Trans. Amer. Math. Soc., 106 (1963), 259–269 | DOI | MR | Zbl
[15] Stolzenberg G., “Uniform approximation on smooth curves”, Acta math., 115 (1966), 185–198 | DOI | MR | Zbl
[16] Wermer J., “The hull of a curve in $\mathbb C^n$”, Ann. Math. Ser. 2, 68:3 (1958), 550–561 | DOI | MR | Zbl