Normal Forms of Families of Maps in the Poincaré Domain
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Nonlinear analytic differential equations, Tome 254 (2006), pp. 101-110
Cet article a éte moissonné depuis la source Math-Net.Ru
An analog of Brushlinskaya's theorem about normal forms of deformations of vector fields in the Poincaré domain is proved; namely, it is proved that for each analytic map whose linear part at a fixed point belongs to the Poincaré domain and has different eigenvalues, the analytic normal form of a deformation of this map is polynomial and contains (in addition to the linear part) only monomials that are resonant for the unperturbed map. A global (with respect to the parameter) version of this theorem is also proved.
@article{TM_2006_254_a2,
author = {I. S. Gorbovitskii},
title = {Normal {Forms} of {Families} of {Maps} in the {Poincar\'e} {Domain}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {101--110},
year = {2006},
volume = {254},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2006_254_a2/}
}
I. S. Gorbovitskii. Normal Forms of Families of Maps in the Poincaré Domain. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Nonlinear analytic differential equations, Tome 254 (2006), pp. 101-110. http://geodesic.mathdoc.fr/item/TM_2006_254_a2/
[1] Brushlinskaya N.N., “Versalnoe semeistvo vektornykh polei oblasti Puankare”, Funkts. anal. i ego pril., 4:1 (1970), 6–13 | MR | Zbl
[2] Ilyashenko Yu.S., Pyartli A.S., “Materializatsiya rezonansov Puankare i raskhodimost normalizuyuschikh ryadov”, Tr. sem. im. I.G. Petrovskogo, 7 (1981), 3–49 | MR | Zbl
[3] Shabat B.V., Vvedenie v kompleksnyi analiz, Nauka, M., 1969 | MR | Zbl