Upper Bounds for the Number of Orbital Topological Types of Planar Polynomial Vector Fields “Modulo Limit Cycles”
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Nonlinear analytic differential equations, Tome 254 (2006), pp. 254-271
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The purpose of this paper is to find an upper bound for the number of orbital topological types of $n$th-degree polynomial planar fields. An obstacle to obtaining such a bound is related to the unsolved second part of Hilbert's 16th problem. This obstacle is avoided by introducing the notion of equivalence modulo limit cycles. Earlier, the author obtained a lower bound of the form $2^{cn^2}$. In the present paper, an upper bound of the same form but with a different constant is found. Moreover, for each planar polynomial vector field with finitely many singular points, a marked planar graph is constructed that represents a complete orbital topological invariant of this field.
@article{TM_2006_254_a11,
     author = {R. M. Fedorov},
     title = {Upper {Bounds} for the {Number} of {Orbital} {Topological} {Types} of {Planar} {Polynomial} {Vector} {Fields} {{\textquotedblleft}Modulo} {Limit} {Cycles{\textquotedblright}}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {254--271},
     year = {2006},
     volume = {254},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2006_254_a11/}
}
TY  - JOUR
AU  - R. M. Fedorov
TI  - Upper Bounds for the Number of Orbital Topological Types of Planar Polynomial Vector Fields “Modulo Limit Cycles”
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2006
SP  - 254
EP  - 271
VL  - 254
UR  - http://geodesic.mathdoc.fr/item/TM_2006_254_a11/
LA  - ru
ID  - TM_2006_254_a11
ER  - 
%0 Journal Article
%A R. M. Fedorov
%T Upper Bounds for the Number of Orbital Topological Types of Planar Polynomial Vector Fields “Modulo Limit Cycles”
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2006
%P 254-271
%V 254
%U http://geodesic.mathdoc.fr/item/TM_2006_254_a11/
%G ru
%F TM_2006_254_a11
R. M. Fedorov. Upper Bounds for the Number of Orbital Topological Types of Planar Polynomial Vector Fields “Modulo Limit Cycles”. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Nonlinear analytic differential equations, Tome 254 (2006), pp. 254-271. http://geodesic.mathdoc.fr/item/TM_2006_254_a11/

[1] Andronov A.A., Leontovich E.A., Gordon I.I., Maier A.G., Kachestvennaya teoriya dinamicheskikh sistem vtorogo poryadka, Nauka, M., 1966, 568 pp. | MR | Zbl

[2] Anosov D.V., Aranson S.Kh., Arnold V.I., Bronshtein I.Yu., Grines V.Z., Ilyashenko Yu.S., Dinamicheskie sistemy–1, VINITI, M., 1985, 242 pp.

[3] Arnold V.I., Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978, 304 pp. | MR

[4] Arnold V.I., Obyknovennye differentsialnye uravneniya, Nauka, M., 1972, 240 pp. | MR | Zbl

[5] Fedorov R.M., “Verkhnie otsenki chisla orbitalnykh topologicheskikh tipov polinomialnykh vektornykh polei na ploskosti «po modulyu predelnykh tsiklov»”, UMN, 59:3 (2004), 183–184 | MR | Zbl

[6] Khovanskii A.G., Malochleny, Fazis, M., 1997, 217 pp. | MR

[7] Écalle J., Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac, Actualités mathématiques, Hermann, Paris, 1992, ii+340 pp. | MR

[8] Fedorov R.M., “Lower bounds for the number of orbital topological types of planar polynomial vector fields ‘modulo limit cycles’”, Moscow Math. J., 1:4 (2001), 539–550 | MR | Zbl

[9] Fedorov R.M., Upper bounds for the number of orbital topological types of planar polynomial vector fields ‘modulo limit cycles’, math.DS/0402214

[10] Ilyashenko Yu.S., Finiteness theorems for limit cycles, Transl. Math. Monogr., 94, Amer. Math. Soc., Providence (RI), 1991, x+288 pp. | MR | Zbl

[11] Ilyashenko Yu., “Centennial history of Hilbert's 16th problem”, Bull. Amer. Math. Soc., 39:3 (2002), 301–354 | DOI | MR | Zbl

[12] Markus L., “Global structure of ordinary differential equations in the plane”, Trans. Amer. Math. Soc., 76 (1954), 127–148 | DOI | MR | Zbl

[13] Markus L., “Topological types of polynomial differential equations”, Trans. Amer. Math. Soc., 171 (1972), 157–178 | DOI | MR | Zbl

[14] Tutte W.T., “A census of the planar maps”, Canad. J. Math., 15 (1963), 249–271 | MR | Zbl

[15] Zvonkin A., “Matrix integrals and map enumeration: An accessible introduction”, Math. and Comput. Modell., 26 (1997), 281–304 | DOI | MR | Zbl

[16] Kauffman L.H., Virtual knot theory, Talk at the AMS Spring Eastern Sectional Meeting, Univ. Maryland, College Park (USA), Apr. 1997