Voir la notice du chapitre de livre
@article{TM_2006_254_a11,
author = {R. M. Fedorov},
title = {Upper {Bounds} for the {Number} of {Orbital} {Topological} {Types} of {Planar} {Polynomial} {Vector} {Fields} {{\textquotedblleft}Modulo} {Limit} {Cycles{\textquotedblright}}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {254--271},
year = {2006},
volume = {254},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2006_254_a11/}
}
TY - JOUR AU - R. M. Fedorov TI - Upper Bounds for the Number of Orbital Topological Types of Planar Polynomial Vector Fields “Modulo Limit Cycles” JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2006 SP - 254 EP - 271 VL - 254 UR - http://geodesic.mathdoc.fr/item/TM_2006_254_a11/ LA - ru ID - TM_2006_254_a11 ER -
%0 Journal Article %A R. M. Fedorov %T Upper Bounds for the Number of Orbital Topological Types of Planar Polynomial Vector Fields “Modulo Limit Cycles” %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2006 %P 254-271 %V 254 %U http://geodesic.mathdoc.fr/item/TM_2006_254_a11/ %G ru %F TM_2006_254_a11
R. M. Fedorov. Upper Bounds for the Number of Orbital Topological Types of Planar Polynomial Vector Fields “Modulo Limit Cycles”. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Nonlinear analytic differential equations, Tome 254 (2006), pp. 254-271. http://geodesic.mathdoc.fr/item/TM_2006_254_a11/
[1] Andronov A.A., Leontovich E.A., Gordon I.I., Maier A.G., Kachestvennaya teoriya dinamicheskikh sistem vtorogo poryadka, Nauka, M., 1966, 568 pp. | MR | Zbl
[2] Anosov D.V., Aranson S.Kh., Arnold V.I., Bronshtein I.Yu., Grines V.Z., Ilyashenko Yu.S., Dinamicheskie sistemy–1, VINITI, M., 1985, 242 pp.
[3] Arnold V.I., Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978, 304 pp. | MR
[4] Arnold V.I., Obyknovennye differentsialnye uravneniya, Nauka, M., 1972, 240 pp. | MR | Zbl
[5] Fedorov R.M., “Verkhnie otsenki chisla orbitalnykh topologicheskikh tipov polinomialnykh vektornykh polei na ploskosti «po modulyu predelnykh tsiklov»”, UMN, 59:3 (2004), 183–184 | MR | Zbl
[6] Khovanskii A.G., Malochleny, Fazis, M., 1997, 217 pp. | MR
[7] Écalle J., Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac, Actualités mathématiques, Hermann, Paris, 1992, ii+340 pp. | MR
[8] Fedorov R.M., “Lower bounds for the number of orbital topological types of planar polynomial vector fields ‘modulo limit cycles’”, Moscow Math. J., 1:4 (2001), 539–550 | MR | Zbl
[9] Fedorov R.M., Upper bounds for the number of orbital topological types of planar polynomial vector fields ‘modulo limit cycles’, math.DS/0402214
[10] Ilyashenko Yu.S., Finiteness theorems for limit cycles, Transl. Math. Monogr., 94, Amer. Math. Soc., Providence (RI), 1991, x+288 pp. | MR | Zbl
[11] Ilyashenko Yu., “Centennial history of Hilbert's 16th problem”, Bull. Amer. Math. Soc., 39:3 (2002), 301–354 | DOI | MR | Zbl
[12] Markus L., “Global structure of ordinary differential equations in the plane”, Trans. Amer. Math. Soc., 76 (1954), 127–148 | DOI | MR | Zbl
[13] Markus L., “Topological types of polynomial differential equations”, Trans. Amer. Math. Soc., 171 (1972), 157–178 | DOI | MR | Zbl
[14] Tutte W.T., “A census of the planar maps”, Canad. J. Math., 15 (1963), 249–271 | MR | Zbl
[15] Zvonkin A., “Matrix integrals and map enumeration: An accessible introduction”, Math. and Comput. Modell., 26 (1997), 281–304 | DOI | MR | Zbl
[16] Kauffman L.H., Virtual knot theory, Talk at the AMS Spring Eastern Sectional Meeting, Univ. Maryland, College Park (USA), Apr. 1997