Upper Bounds for the Number of Orbital Topological Types of Planar Polynomial Vector Fields ``Modulo Limit Cycles''
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Nonlinear analytic differential equations, Tome 254 (2006), pp. 254-271

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this paper is to find an upper bound for the number of orbital topological types of $n$th-degree polynomial planar fields. An obstacle to obtaining such a bound is related to the unsolved second part of Hilbert's 16th problem. This obstacle is avoided by introducing the notion of equivalence modulo limit cycles. Earlier, the author obtained a lower bound of the form $2^{cn^2}$. In the present paper, an upper bound of the same form but with a different constant is found. Moreover, for each planar polynomial vector field with finitely many singular points, a marked planar graph is constructed that represents a complete orbital topological invariant of this field.
@article{TM_2006_254_a11,
     author = {R. M. Fedorov},
     title = {Upper {Bounds} for the {Number} of {Orbital} {Topological} {Types} of {Planar} {Polynomial} {Vector} {Fields} {``Modulo} {Limit} {Cycles''}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {254--271},
     publisher = {mathdoc},
     volume = {254},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2006_254_a11/}
}
TY  - JOUR
AU  - R. M. Fedorov
TI  - Upper Bounds for the Number of Orbital Topological Types of Planar Polynomial Vector Fields ``Modulo Limit Cycles''
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2006
SP  - 254
EP  - 271
VL  - 254
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2006_254_a11/
LA  - ru
ID  - TM_2006_254_a11
ER  - 
%0 Journal Article
%A R. M. Fedorov
%T Upper Bounds for the Number of Orbital Topological Types of Planar Polynomial Vector Fields ``Modulo Limit Cycles''
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2006
%P 254-271
%V 254
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2006_254_a11/
%G ru
%F TM_2006_254_a11
R. M. Fedorov. Upper Bounds for the Number of Orbital Topological Types of Planar Polynomial Vector Fields ``Modulo Limit Cycles''. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Nonlinear analytic differential equations, Tome 254 (2006), pp. 254-271. http://geodesic.mathdoc.fr/item/TM_2006_254_a11/