Upper Bounds for the Number of Orbital Topological Types of Planar Polynomial Vector Fields ``Modulo Limit Cycles''
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Nonlinear analytic differential equations, Tome 254 (2006), pp. 254-271.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this paper is to find an upper bound for the number of orbital topological types of $n$th-degree polynomial planar fields. An obstacle to obtaining such a bound is related to the unsolved second part of Hilbert's 16th problem. This obstacle is avoided by introducing the notion of equivalence modulo limit cycles. Earlier, the author obtained a lower bound of the form $2^{cn^2}$. In the present paper, an upper bound of the same form but with a different constant is found. Moreover, for each planar polynomial vector field with finitely many singular points, a marked planar graph is constructed that represents a complete orbital topological invariant of this field.
@article{TM_2006_254_a11,
     author = {R. M. Fedorov},
     title = {Upper {Bounds} for the {Number} of {Orbital} {Topological} {Types} of {Planar} {Polynomial} {Vector} {Fields} {``Modulo} {Limit} {Cycles''}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {254--271},
     publisher = {mathdoc},
     volume = {254},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2006_254_a11/}
}
TY  - JOUR
AU  - R. M. Fedorov
TI  - Upper Bounds for the Number of Orbital Topological Types of Planar Polynomial Vector Fields ``Modulo Limit Cycles''
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2006
SP  - 254
EP  - 271
VL  - 254
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2006_254_a11/
LA  - ru
ID  - TM_2006_254_a11
ER  - 
%0 Journal Article
%A R. M. Fedorov
%T Upper Bounds for the Number of Orbital Topological Types of Planar Polynomial Vector Fields ``Modulo Limit Cycles''
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2006
%P 254-271
%V 254
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2006_254_a11/
%G ru
%F TM_2006_254_a11
R. M. Fedorov. Upper Bounds for the Number of Orbital Topological Types of Planar Polynomial Vector Fields ``Modulo Limit Cycles''. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Nonlinear analytic differential equations, Tome 254 (2006), pp. 254-271. http://geodesic.mathdoc.fr/item/TM_2006_254_a11/

[1] Andronov A.A., Leontovich E.A., Gordon I.I., Maier A.G., Kachestvennaya teoriya dinamicheskikh sistem vtorogo poryadka, Nauka, M., 1966, 568 pp. | MR | Zbl

[2] Anosov D.V., Aranson S.Kh., Arnold V.I., Bronshtein I.Yu., Grines V.Z., Ilyashenko Yu.S., Dinamicheskie sistemy–1, VINITI, M., 1985, 242 pp.

[3] Arnold V.I., Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978, 304 pp. | MR

[4] Arnold V.I., Obyknovennye differentsialnye uravneniya, Nauka, M., 1972, 240 pp. | MR | Zbl

[5] Fedorov R.M., “Verkhnie otsenki chisla orbitalnykh topologicheskikh tipov polinomialnykh vektornykh polei na ploskosti «po modulyu predelnykh tsiklov»”, UMN, 59:3 (2004), 183–184 | MR | Zbl

[6] Khovanskii A.G., Malochleny, Fazis, M., 1997, 217 pp. | MR

[7] Écalle J., Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac, Actualités mathématiques, Hermann, Paris, 1992, ii+340 pp. | MR

[8] Fedorov R.M., “Lower bounds for the number of orbital topological types of planar polynomial vector fields ‘modulo limit cycles’”, Moscow Math. J., 1:4 (2001), 539–550 | MR | Zbl

[9] Fedorov R.M., Upper bounds for the number of orbital topological types of planar polynomial vector fields ‘modulo limit cycles’, math.DS/0402214

[10] Ilyashenko Yu.S., Finiteness theorems for limit cycles, Transl. Math. Monogr., 94, Amer. Math. Soc., Providence (RI), 1991, x+288 pp. | MR | Zbl

[11] Ilyashenko Yu., “Centennial history of Hilbert's 16th problem”, Bull. Amer. Math. Soc., 39:3 (2002), 301–354 | DOI | MR | Zbl

[12] Markus L., “Global structure of ordinary differential equations in the plane”, Trans. Amer. Math. Soc., 76 (1954), 127–148 | DOI | MR | Zbl

[13] Markus L., “Topological types of polynomial differential equations”, Trans. Amer. Math. Soc., 171 (1972), 157–178 | DOI | MR | Zbl

[14] Tutte W.T., “A census of the planar maps”, Canad. J. Math., 15 (1963), 249–271 | MR | Zbl

[15] Zvonkin A., “Matrix integrals and map enumeration: An accessible introduction”, Math. and Comput. Modell., 26 (1997), 281–304 | DOI | MR | Zbl

[16] Kauffman L.H., Virtual knot theory, Talk at the AMS Spring Eastern Sectional Meeting, Univ. Maryland, College Park (USA), Apr. 1997