On the Number of Limit Cycles of a Monodromic Polynomial Vector Field on the Plane
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Nonlinear analytic differential equations, Tome 254 (2006), pp. 247-253.

Voir la notice de l'article provenant de la source Math-Net.Ru

Limit cycles of monodromic polynomial vector fields are studied. These are fields on the real plane with the unique singular point $0$ whose components are polynomials and whose phase portraits are diffeomorphic to a linear focus. The number of limit cycles of such a field is estimated from above in terms of the degrees of the polynomials, the maximum of the absolute values of their coefficients, and certain characteristics of the monodromy transformation, which can be called multipliers at zero and infinity. The estimate is based on the growth and zeros theorem for holomorphic functions.
@article{TM_2006_254_a10,
     author = {K. P. Khorev},
     title = {On the {Number} of {Limit} {Cycles} of a {Monodromic} {Polynomial} {Vector} {Field} on the {Plane}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {247--253},
     publisher = {mathdoc},
     volume = {254},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2006_254_a10/}
}
TY  - JOUR
AU  - K. P. Khorev
TI  - On the Number of Limit Cycles of a Monodromic Polynomial Vector Field on the Plane
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2006
SP  - 247
EP  - 253
VL  - 254
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2006_254_a10/
LA  - ru
ID  - TM_2006_254_a10
ER  - 
%0 Journal Article
%A K. P. Khorev
%T On the Number of Limit Cycles of a Monodromic Polynomial Vector Field on the Plane
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2006
%P 247-253
%V 254
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2006_254_a10/
%G ru
%F TM_2006_254_a10
K. P. Khorev. On the Number of Limit Cycles of a Monodromic Polynomial Vector Field on the Plane. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Nonlinear analytic differential equations, Tome 254 (2006), pp. 247-253. http://geodesic.mathdoc.fr/item/TM_2006_254_a10/

[1] Ilyashenko Yu. S., “Hilbert-type numbers for Abel equations, growth and zeros of holomorphic functions”, Nonlinearity, 13 (2000), 1337–1342 | DOI | MR | Zbl

[2] Ilyashenko Yu., Panov A., “Some upper estimates of the number of limit cycles of planar vector fields with applications to Liénard equations”, Moscow Math. J., 1:4 (2001), 583–599 | MR | Zbl

[3] Ilyashenko Yu., “Centennial history of Hilbert's 16th problem”, Bull. Amer. Math. Soc., 39:3 (2002), 301–354 | DOI | MR | Zbl

[4] Ilyashenko Yu., Yakovenko S., “Counting real zeros of analytic functions satisfying linear ordinary differential equations”, J. Diff. Equat., 126:1 (1996), 87–105 | DOI | MR

[5] Ilyashenko Yu., Yakovenko S., “Double exponential estimate for the number of zeros of complete Abelian integrals and rational envelopes of linear ordinary differential equations with an irreducible monodromy group”, Invent. Math., 121 (1995), 613–650 | DOI | MR

[6] Smale S., “Mathematical problems for the next century”, Math. Intell., 20:2 (1998), 7–15 | DOI | MR | Zbl