Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2006_254_a10, author = {K. P. Khorev}, title = {On the {Number} of {Limit} {Cycles} of a {Monodromic} {Polynomial} {Vector} {Field} on the {Plane}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {247--253}, publisher = {mathdoc}, volume = {254}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2006_254_a10/} }
TY - JOUR AU - K. P. Khorev TI - On the Number of Limit Cycles of a Monodromic Polynomial Vector Field on the Plane JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2006 SP - 247 EP - 253 VL - 254 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2006_254_a10/ LA - ru ID - TM_2006_254_a10 ER -
K. P. Khorev. On the Number of Limit Cycles of a Monodromic Polynomial Vector Field on the Plane. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Nonlinear analytic differential equations, Tome 254 (2006), pp. 247-253. http://geodesic.mathdoc.fr/item/TM_2006_254_a10/
[1] Ilyashenko Yu. S., “Hilbert-type numbers for Abel equations, growth and zeros of holomorphic functions”, Nonlinearity, 13 (2000), 1337–1342 | DOI | MR | Zbl
[2] Ilyashenko Yu., Panov A., “Some upper estimates of the number of limit cycles of planar vector fields with applications to Liénard equations”, Moscow Math. J., 1:4 (2001), 583–599 | MR | Zbl
[3] Ilyashenko Yu., “Centennial history of Hilbert's 16th problem”, Bull. Amer. Math. Soc., 39:3 (2002), 301–354 | DOI | MR | Zbl
[4] Ilyashenko Yu., Yakovenko S., “Counting real zeros of analytic functions satisfying linear ordinary differential equations”, J. Diff. Equat., 126:1 (1996), 87–105 | DOI | MR
[5] Ilyashenko Yu., Yakovenko S., “Double exponential estimate for the number of zeros of complete Abelian integrals and rational envelopes of linear ordinary differential equations with an irreducible monodromy group”, Invent. Math., 121 (1995), 613–650 | DOI | MR
[6] Smale S., “Mathematical problems for the next century”, Math. Intell., 20:2 (1998), 7–15 | DOI | MR | Zbl