On a~Family of Lie Algebras Related to Homogeneous Surfaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and applications, Tome 253 (2006), pp. 111-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

Real affine homogeneous hypersurfaces of general position in three-dimensional complex space $\mathbb C^3$ are studied. The general position is defined in terms of the Taylor coefficients of the surface equation and implies, first of all, that the isotropy groups of the homogeneous manifolds under consideration are discrete. It is this case that has remained unstudied after the author's works on the holomorphic (in particular, affine) homogeneity of real hypersurfaces in three-dimensional complex manifolds. The actions of affine subgroups $G\subset \mathrm {Aff}(3,\mathbb C)$ in the complex tangent space $T_p^{\mathbb C}M$ of a homogeneous surface are considered. The situation with homogeneity can be described in terms of the dimensions of the corresponding Lie algebras. The main result of the paper eliminates “almost trivial” actions of the groups $G$ on the spaces $T_p^{\mathbb C}M$ for affine homogeneous strictly pseudoconvex surfaces of general position in $\mathbb C^3$ that are different from quadrics.
@article{TM_2006_253_a9,
     author = {A. V. Loboda},
     title = {On {a~Family} of {Lie} {Algebras} {Related} to {Homogeneous} {Surfaces}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {111--126},
     publisher = {mathdoc},
     volume = {253},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2006_253_a9/}
}
TY  - JOUR
AU  - A. V. Loboda
TI  - On a~Family of Lie Algebras Related to Homogeneous Surfaces
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2006
SP  - 111
EP  - 126
VL  - 253
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2006_253_a9/
LA  - ru
ID  - TM_2006_253_a9
ER  - 
%0 Journal Article
%A A. V. Loboda
%T On a~Family of Lie Algebras Related to Homogeneous Surfaces
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2006
%P 111-126
%V 253
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2006_253_a9/
%G ru
%F TM_2006_253_a9
A. V. Loboda. On a~Family of Lie Algebras Related to Homogeneous Surfaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and applications, Tome 253 (2006), pp. 111-126. http://geodesic.mathdoc.fr/item/TM_2006_253_a9/

[1] Cartan É., “Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes”, Ann. Mat. Pura ed Appl. Ser. 4, 11 (1932), 17–90 ; ØE uvres complètes, Pt. 2. V. 2, Gauthier-Villars, Paris, 1953, 1231–1304 | DOI | MR | Zbl

[2] Azad H., Huckleberry A., Richthofer W., “Homogeneous CR-manifolds”, J. reine und angew. Math., 358 (1985), 125–154 | MR | Zbl

[3] Loboda A.V., “O razmernosti gruppy, tranzitivno deistvuyuschei na giperpoverkhnosti v $\mathbb C^3$”, Funkts. anal. i ego pril., 33:1 (1999), 68–71 | MR | Zbl

[4] Loboda A.V., Bugaeva Zh.A., Khodarev A.S., “O lineinoi odnorodnosti zhestkikh veschestvennykh giperpoverkhnostei 3-mernogo kompleksnogo prostranstva”, Mezhdunar. shkola-seminar, posv. 90-letiyu N.V. Efimova, Tez. dokl. (Abrau-Dyurso, 2000), 131–133

[5] Loboda A.V., “Odnorodnye veschestvennye giperpoverkhnosti v $\mathbb C^3$ s dvumernymi gruppami izotropii”, Tr. MIAN, 235, 2001, 114–142 | MR | Zbl

[6] Loboda A.V., “Odnorodnye strogo psevdovypuklye giperpoverkhnosti v $\mathbb C^3$ s dvumernymi gruppami izotropii”, Mat. sb., 192:12 (2001), 3–24 | MR | Zbl

[7] Loboda A.V., Khodarev A.S., “Ob odnom semeistve affinno odnorodnykh veschestvennykh giperpoverkhnostei 3-mernogo kompleksnogo prostranstva”, Izv. vuzov. Matematika, 2003, no. 10, 38–50 | MR | Zbl

[8] Loboda A.V., “Three-dimensional real Lie subalgebras of the matrix algebra $M(2,\mathbb C)$”, Russ. J. Math. Phys., 10:4 (2003), 495–500 | MR | Zbl