Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2006_253_a9, author = {A. V. Loboda}, title = {On {a~Family} of {Lie} {Algebras} {Related} to {Homogeneous} {Surfaces}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {111--126}, publisher = {mathdoc}, volume = {253}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2006_253_a9/} }
A. V. Loboda. On a~Family of Lie Algebras Related to Homogeneous Surfaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and applications, Tome 253 (2006), pp. 111-126. http://geodesic.mathdoc.fr/item/TM_2006_253_a9/
[1] Cartan É., “Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes”, Ann. Mat. Pura ed Appl. Ser. 4, 11 (1932), 17–90 ; ØE uvres complètes, Pt. 2. V. 2, Gauthier-Villars, Paris, 1953, 1231–1304 | DOI | MR | Zbl
[2] Azad H., Huckleberry A., Richthofer W., “Homogeneous CR-manifolds”, J. reine und angew. Math., 358 (1985), 125–154 | MR | Zbl
[3] Loboda A.V., “O razmernosti gruppy, tranzitivno deistvuyuschei na giperpoverkhnosti v $\mathbb C^3$”, Funkts. anal. i ego pril., 33:1 (1999), 68–71 | MR | Zbl
[4] Loboda A.V., Bugaeva Zh.A., Khodarev A.S., “O lineinoi odnorodnosti zhestkikh veschestvennykh giperpoverkhnostei 3-mernogo kompleksnogo prostranstva”, Mezhdunar. shkola-seminar, posv. 90-letiyu N.V. Efimova, Tez. dokl. (Abrau-Dyurso, 2000), 131–133
[5] Loboda A.V., “Odnorodnye veschestvennye giperpoverkhnosti v $\mathbb C^3$ s dvumernymi gruppami izotropii”, Tr. MIAN, 235, 2001, 114–142 | MR | Zbl
[6] Loboda A.V., “Odnorodnye strogo psevdovypuklye giperpoverkhnosti v $\mathbb C^3$ s dvumernymi gruppami izotropii”, Mat. sb., 192:12 (2001), 3–24 | MR | Zbl
[7] Loboda A.V., Khodarev A.S., “Ob odnom semeistve affinno odnorodnykh veschestvennykh giperpoverkhnostei 3-mernogo kompleksnogo prostranstva”, Izv. vuzov. Matematika, 2003, no. 10, 38–50 | MR | Zbl
[8] Loboda A.V., “Three-dimensional real Lie subalgebras of the matrix algebra $M(2,\mathbb C)$”, Russ. J. Math. Phys., 10:4 (2003), 495–500 | MR | Zbl