Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2006_253_a5, author = {A. B. Zaitsev}, title = {Uniform {Approximation} by {Polynomial} {Solutions} of {Second-Order} {Elliptic} {Equations,} and the {Corresponding} {Dirichlet} {Problem}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {67--80}, publisher = {mathdoc}, volume = {253}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2006_253_a5/} }
TY - JOUR AU - A. B. Zaitsev TI - Uniform Approximation by Polynomial Solutions of Second-Order Elliptic Equations, and the Corresponding Dirichlet Problem JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2006 SP - 67 EP - 80 VL - 253 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2006_253_a5/ LA - ru ID - TM_2006_253_a5 ER -
%0 Journal Article %A A. B. Zaitsev %T Uniform Approximation by Polynomial Solutions of Second-Order Elliptic Equations, and the Corresponding Dirichlet Problem %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2006 %P 67-80 %V 253 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2006_253_a5/ %G ru %F TM_2006_253_a5
A. B. Zaitsev. Uniform Approximation by Polynomial Solutions of Second-Order Elliptic Equations, and the Corresponding Dirichlet Problem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and applications, Tome 253 (2006), pp. 67-80. http://geodesic.mathdoc.fr/item/TM_2006_253_a5/
[1] Paramonov P.V., Fedorovskii K.Yu., “O ravnomernoi i $C^1$-priblizhaemosti funktsii na kompaktakh v $\mathbb R^2$ resheniyami ellipticheskikh uravnenii vtorogo poryadka”, Mat. sb., 190:2 (1999), 123–144 | MR | Zbl
[2] Paramonov P.V., “$C^m$-priblizheniya garmonicheskimi polinomami na kompaktnykh mnozhestvakh v $\mathbb R^n$”, Mat. sb., 184:2 (1993), 105–128 | MR | Zbl
[3] Zaitsev A.B., “O ravnomernoi priblizhaemosti funktsii polinomami spetsialnykh klassov na kompaktakh v $\mathbb R^2$”, Mat. zametki, 71:1 (2002), 75–87 | MR | Zbl
[4] Karmona Kh.Kh., Paramonov P.V., Fedorovskii K.Yu., “O ravnomernoi approksimatsii polianaliticheskimi mnogochlenami i zadache Dirikhle dlya bianaliticheskikh funktsii”, Mat. sb., 193:10 (2002), 75–98 | MR
[5] Buave A., Gote P.M., Paramonov P.V., “O ravnomernoi approksimatsii $n$-analiticheskimi funktsiyami na zamknutykh mnozhestvakh v $\mathbb C$”, Izv. RAN. Ser. mat., 68:3 (2004), 15–28 | MR
[6] Zaitsev A.B., “O ravnomernoi priblizhaemosti funktsii polinomialnymi resheniyami ellipticheskikh uravnenii vtorogo poryadka na ploskikh kompaktakh”, Izv. RAN. Ser. mat., 68:6 (2004), 85–98 | MR
[7] Fedorovskii K.Yu., “O ravnomernykh priblizheniyakh funktsii $n$-analiticheskimi polinomami na spryamlyaemykh konturakh v $\mathbb C$”, Mat. zametki, 59:4 (1996), 604–610 | MR | Zbl
[8] Fedorovskii K.Yu., “O nekotorykh svoistvakh i primerakh nevanlinnovskikh oblastei”, Tr. MIAN, 253, 2006, 204–213 | MR
[9] Davis P., The Schwarz function and its applications, Carus Math. Monogr., 17, Math. Assoc. Amer., Washington, DC, 1974 | MR | Zbl
[10] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki. Funktsionalnyi analiz, Mir, M., 1977 | MR
[11] Privalov I.I., Granichnye svoistva analiticheskikh funktsii, Gostekhizdat, M.; L., 1950
[12] Paramonov P.V., Verdera J., “Approximation by solutions of elliptic equations on closed subsets of Euclidean space”, Math. scand., 74:2 (1994), 249–259 | MR | Zbl
[13] Verchota G.C., Vogel A.L., “Nonsymmetric systems on nonsmooth planar domains”, Trans. Amer. Math. Soc., 349:11 (1997), 4501–4535 | DOI | MR | Zbl
[14] Balk M.B., Polyanalytic functions, Math. Res., 63, Akad. Verl., Berlin, 1991 | MR | Zbl
[15] Zaitsev A.B., “O ravnomernoi priblizhaemosti funktsii polinomialnymi resheniyami ellipticheskikh uravnenii vtorogo poryadka na kompaktakh v $\mathbb R^2$”, Mat. zametki, 74:1 (2003), 41–51 | MR | Zbl
[16] Gamelin T., Ravnomernye algebry, Mir, M., 1973 | Zbl
[17] Alfors L., Lektsii po kvazikonformnym otobrazheniyam, Mir, M., 1969 | MR
[18] Carmona J.J., “Mergelyan approximation theorem for rational modules”, J. Approx. Theory, 44 (1985), 113–126 | DOI | MR | Zbl