Uniform Approximation by Polynomial Solutions of Second-Order Elliptic Equations, and the Corresponding Dirichlet Problem
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and applications, Tome 253 (2006), pp. 67-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions for the uniform approximability of functions by polynomial solutions of second-order elliptic equations with constant complex coefficients on compact sets of special form in $\mathbb R^2$ are studied. The results obtained are of analytic character. Conditions of solvability and uniqueness for the corresponding Dirichlet problem are also studied. It is proved that the polynomial approximability on the boundary of a domain is not generally equivalent to the solvability of the corresponding Dirichlet problem.
@article{TM_2006_253_a5,
     author = {A. B. Zaitsev},
     title = {Uniform {Approximation} by {Polynomial} {Solutions} of {Second-Order} {Elliptic} {Equations,} and the {Corresponding} {Dirichlet} {Problem}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {67--80},
     publisher = {mathdoc},
     volume = {253},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2006_253_a5/}
}
TY  - JOUR
AU  - A. B. Zaitsev
TI  - Uniform Approximation by Polynomial Solutions of Second-Order Elliptic Equations, and the Corresponding Dirichlet Problem
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2006
SP  - 67
EP  - 80
VL  - 253
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2006_253_a5/
LA  - ru
ID  - TM_2006_253_a5
ER  - 
%0 Journal Article
%A A. B. Zaitsev
%T Uniform Approximation by Polynomial Solutions of Second-Order Elliptic Equations, and the Corresponding Dirichlet Problem
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2006
%P 67-80
%V 253
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2006_253_a5/
%G ru
%F TM_2006_253_a5
A. B. Zaitsev. Uniform Approximation by Polynomial Solutions of Second-Order Elliptic Equations, and the Corresponding Dirichlet Problem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and applications, Tome 253 (2006), pp. 67-80. http://geodesic.mathdoc.fr/item/TM_2006_253_a5/

[1] Paramonov P.V., Fedorovskii K.Yu., “O ravnomernoi i $C^1$-priblizhaemosti funktsii na kompaktakh v $\mathbb R^2$ resheniyami ellipticheskikh uravnenii vtorogo poryadka”, Mat. sb., 190:2 (1999), 123–144 | MR | Zbl

[2] Paramonov P.V., “$C^m$-priblizheniya garmonicheskimi polinomami na kompaktnykh mnozhestvakh v $\mathbb R^n$”, Mat. sb., 184:2 (1993), 105–128 | MR | Zbl

[3] Zaitsev A.B., “O ravnomernoi priblizhaemosti funktsii polinomami spetsialnykh klassov na kompaktakh v $\mathbb R^2$”, Mat. zametki, 71:1 (2002), 75–87 | MR | Zbl

[4] Karmona Kh.Kh., Paramonov P.V., Fedorovskii K.Yu., “O ravnomernoi approksimatsii polianaliticheskimi mnogochlenami i zadache Dirikhle dlya bianaliticheskikh funktsii”, Mat. sb., 193:10 (2002), 75–98 | MR

[5] Buave A., Gote P.M., Paramonov P.V., “O ravnomernoi approksimatsii $n$-analiticheskimi funktsiyami na zamknutykh mnozhestvakh v $\mathbb C$”, Izv. RAN. Ser. mat., 68:3 (2004), 15–28 | MR

[6] Zaitsev A.B., “O ravnomernoi priblizhaemosti funktsii polinomialnymi resheniyami ellipticheskikh uravnenii vtorogo poryadka na ploskikh kompaktakh”, Izv. RAN. Ser. mat., 68:6 (2004), 85–98 | MR

[7] Fedorovskii K.Yu., “O ravnomernykh priblizheniyakh funktsii $n$-analiticheskimi polinomami na spryamlyaemykh konturakh v $\mathbb C$”, Mat. zametki, 59:4 (1996), 604–610 | MR | Zbl

[8] Fedorovskii K.Yu., “O nekotorykh svoistvakh i primerakh nevanlinnovskikh oblastei”, Tr. MIAN, 253, 2006, 204–213 | MR

[9] Davis P., The Schwarz function and its applications, Carus Math. Monogr., 17, Math. Assoc. Amer., Washington, DC, 1974 | MR | Zbl

[10] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki. Funktsionalnyi analiz, Mir, M., 1977 | MR

[11] Privalov I.I., Granichnye svoistva analiticheskikh funktsii, Gostekhizdat, M.; L., 1950

[12] Paramonov P.V., Verdera J., “Approximation by solutions of elliptic equations on closed subsets of Euclidean space”, Math. scand., 74:2 (1994), 249–259 | MR | Zbl

[13] Verchota G.C., Vogel A.L., “Nonsymmetric systems on nonsmooth planar domains”, Trans. Amer. Math. Soc., 349:11 (1997), 4501–4535 | DOI | MR | Zbl

[14] Balk M.B., Polyanalytic functions, Math. Res., 63, Akad. Verl., Berlin, 1991 | MR | Zbl

[15] Zaitsev A.B., “O ravnomernoi priblizhaemosti funktsii polinomialnymi resheniyami ellipticheskikh uravnenii vtorogo poryadka na kompaktakh v $\mathbb R^2$”, Mat. zametki, 74:1 (2003), 41–51 | MR | Zbl

[16] Gamelin T., Ravnomernye algebry, Mir, M., 1973 | Zbl

[17] Alfors L., Lektsii po kvazikonformnym otobrazheniyam, Mir, M., 1969 | MR

[18] Carmona J.J., “Mergelyan approximation theorem for rational modules”, J. Approx. Theory, 44 (1985), 113–126 | DOI | MR | Zbl