Pseudoholomorphic Discs Near an Elliptic Point
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and applications, Tome 253 (2006), pp. 296-303.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the existence and study the geometry of Bishop discs near an elliptic point of a real $n$-dimensional submanifold of an almost complex $n$-dimensional manifold.
@article{TM_2006_253_a21,
     author = {A. B. Sukhov and A. E. Tumanov},
     title = {Pseudoholomorphic {Discs} {Near} an {Elliptic} {Point}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {296--303},
     publisher = {mathdoc},
     volume = {253},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2006_253_a21/}
}
TY  - JOUR
AU  - A. B. Sukhov
AU  - A. E. Tumanov
TI  - Pseudoholomorphic Discs Near an Elliptic Point
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2006
SP  - 296
EP  - 303
VL  - 253
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2006_253_a21/
LA  - en
ID  - TM_2006_253_a21
ER  - 
%0 Journal Article
%A A. B. Sukhov
%A A. E. Tumanov
%T Pseudoholomorphic Discs Near an Elliptic Point
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2006
%P 296-303
%V 253
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2006_253_a21/
%G en
%F TM_2006_253_a21
A. B. Sukhov; A. E. Tumanov. Pseudoholomorphic Discs Near an Elliptic Point. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and applications, Tome 253 (2006), pp. 296-303. http://geodesic.mathdoc.fr/item/TM_2006_253_a21/

[1] Bedford E., Gaveau B., “Envelopes of holomorphy of certain 2-spheres in $\mathbb C^2$”, Amer. J. Math., 105 (1983), 975–1009 | DOI | MR | Zbl

[2] Bishop E., “Differentiable manifolds in complex Euclidean space”, Duke Math. J., 32 (1965), 1–21 | DOI | MR | Zbl

[3] Eliashberg Y., “Filling by holomorphic discs and its applications”, Geometry of low-dimensional manifolds. 2: Symplectic manifolds and Jones–Witten theory, Proc. Symp. (Durham (UK), 1989), LMS Lect. Note Ser., 151, Cambridge Univ. Press, Cambridge, 1990, 45–67 | MR

[4] Gromov M., “Pseudo-holomorphic curves in symplectic manifolds”, Invent. math., 82 (1985), 307–347 | DOI | MR | Zbl

[5] Hofer H., “Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three”, Invent. math., 114 (1993), 515–563 | DOI | MR | Zbl

[6] Kenig C., Webster S., “The local hull of holomorphy of a surface in the space of two complex variables”, Invent. math., 67 (1982), 1–21 | DOI | MR | Zbl

[7] Kenig C., Webster S., “On the hull of holomorphy of an $n$-manifold in $\mathbb C^n$”, Ann. Scuola Norm. Super. Pisa, 11 (1984), 261–280 | MR | Zbl

[8] Kruzhilin N., Sukhov A., “Pseudoholomorphic discs attached to CR-submanifolds of almost complex spaces”, Bull. sci. math., 129 (2005), 398–414 | DOI | MR | Zbl

[9] Nijenhuis A., Woolf W., “Some integration problems in almost-complex and complex manifolds”, Ann. Math., 77 (1963), 424–489 | DOI | MR | Zbl

[10] Tumanov A., “Extending CR functions from manifolds with boundaries”, Math. Res. Lett., 2 (1995), 629–642 | MR | Zbl

[11] Vekua I.N., Generalized analytic functions, Pergamon Press, London, 1962 | MR | MR | Zbl

[12] Ye R., “Filling by holomorphic curves in symplectic 4-manifolds”, Trans. Amer. Math. Soc., 350 (1998), 213–250 | DOI | MR | Zbl