Cayley Hypersurfaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and applications, Tome 253 (2006), pp. 241-244.

Voir la notice de l'article provenant de la source Math-Net.Ru

We exhibit a family of homogeneous hypersurfaces in affine space, one in each dimension, that generalize the Cayley surface.
@article{TM_2006_253_a17,
     author = {M. G. Eastwood and V. Ezhov},
     title = {Cayley {Hypersurfaces}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {241--244},
     publisher = {mathdoc},
     volume = {253},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2006_253_a17/}
}
TY  - JOUR
AU  - M. G. Eastwood
AU  - V. Ezhov
TI  - Cayley Hypersurfaces
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2006
SP  - 241
EP  - 244
VL  - 253
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2006_253_a17/
LA  - en
ID  - TM_2006_253_a17
ER  - 
%0 Journal Article
%A M. G. Eastwood
%A V. Ezhov
%T Cayley Hypersurfaces
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2006
%P 241-244
%V 253
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2006_253_a17/
%G en
%F TM_2006_253_a17
M. G. Eastwood; V. Ezhov. Cayley Hypersurfaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and applications, Tome 253 (2006), pp. 241-244. http://geodesic.mathdoc.fr/item/TM_2006_253_a17/

[1] Dillen F., Vrancken L., “Generalized Cayley surfaces”, Global differential geometry and global analysis, Proc. Conf. (Berlin, 1990), Lect. Notes Math., 1481, eds. D. Ferus, U. Pinkall, U. Simon, B. Wegner, Springer, Berlin, 1991, 36–47 | MR

[2] Dillen F., Vrancken L., “Hypersurfaces with parallel difference tensor”, Japan. J. Math., 24 (1998), 43–60 | MR | Zbl

[3] Nomizu K., Sasaki T., Affine differential geometry, Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl

[4] LeichtweißK., “Über eine geometrische Deutung des Affinnormalenvektors einseitig gekrümmter Hyperflächen”, Arch. Math., 53 (1989), 613–621 | DOI | MR | Zbl

[5] Nomizu K., Pinkall U., “Cayley surfaces in affine differential geometry”, Tôhoku Math. J., 41 (1989), 589–596 | DOI | MR | Zbl

[6] Choi Y., Kim H., “A characterization of Cayley hypersurface and Eastwood and Ezhov conjecture”, Intern. J. Math., 16 (2005), 841–862 | DOI | MR | Zbl

[7] Eastwood M., Ezhov V., “Homogeneous hypersurfaces with isotropy in affine four-space”, Tr. MIAN, 235, 2001, 57–70 | MR | Zbl