Envelopes of Holomorphy of Jordan Curves in~$\mathbb C^n$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and applications, Tome 253 (2006), pp. 214-231

Voir la notice de l'article provenant de la source Math-Net.Ru

A comprehensive answer is given to two related questions: (i) Can continuous functions be approximated by holomorphic ones on Jordan curves in $\mathbb C^n$ (A. G. Vitushkin, 1964)? (ii) Is any Jordan curve in $\mathbb C^n$ holomorphically convex (E.L. Stout, 1970)?
@article{TM_2006_253_a15,
     author = {G. M. Henkin},
     title = {Envelopes of {Holomorphy} of {Jordan} {Curves} in~$\mathbb C^n$},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {214--231},
     publisher = {mathdoc},
     volume = {253},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2006_253_a15/}
}
TY  - JOUR
AU  - G. M. Henkin
TI  - Envelopes of Holomorphy of Jordan Curves in~$\mathbb C^n$
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2006
SP  - 214
EP  - 231
VL  - 253
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2006_253_a15/
LA  - ru
ID  - TM_2006_253_a15
ER  - 
%0 Journal Article
%A G. M. Henkin
%T Envelopes of Holomorphy of Jordan Curves in~$\mathbb C^n$
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2006
%P 214-231
%V 253
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2006_253_a15/
%G ru
%F TM_2006_253_a15
G. M. Henkin. Envelopes of Holomorphy of Jordan Curves in~$\mathbb C^n$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and applications, Tome 253 (2006), pp. 214-231. http://geodesic.mathdoc.fr/item/TM_2006_253_a15/