Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2006_253_a13, author = {A. G. Sergeev}, title = {K\"ahler {Geometry} of the {Universal} {Teichm\"uller} {Space} and {Coadjoint} {Orbits} of the {Virasoro} {Group}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {175--203}, publisher = {mathdoc}, volume = {253}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2006_253_a13/} }
TY - JOUR AU - A. G. Sergeev TI - K\"ahler Geometry of the Universal Teichm\"uller Space and Coadjoint Orbits of the Virasoro Group JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2006 SP - 175 EP - 203 VL - 253 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2006_253_a13/ LA - ru ID - TM_2006_253_a13 ER -
%0 Journal Article %A A. G. Sergeev %T K\"ahler Geometry of the Universal Teichm\"uller Space and Coadjoint Orbits of the Virasoro Group %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2006 %P 175-203 %V 253 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2006_253_a13/ %G ru %F TM_2006_253_a13
A. G. Sergeev. K\"ahler Geometry of the Universal Teichm\"uller Space and Coadjoint Orbits of the Virasoro Group. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and applications, Tome 253 (2006), pp. 175-203. http://geodesic.mathdoc.fr/item/TM_2006_253_a13/
[1] Ahlfors L.V., Lectures on quasiconformal mappings, Van Nostrand, Princeton, 1966 ; Alfors L., Lektsii po kvazikonformnym otobrazheniyam, Mir, M., 1969 | MR | Zbl | MR
[2] Bowen R., “Hausdorff dimension of quasicircles”, Publ. Math. IHES, 50 (1979), 259–273 | MR
[3] Douady A., Earle C.J., “Conformally natural extension of homeomorphisms of the circle”, Acta math., 157 (1986), 23–48 | DOI | MR | Zbl
[4] Earle C.J., Eells J., “On the differential geometry of Teichmüller spaces”, J. Anal. Math., 19 (1967), 35–52 | DOI | MR | Zbl
[5] Guieu L., “Nombre de rotation, structures géométriques sur un cercle et groupe de Bott–Virasoro”, Ann. Inst. Fourier, 46 (1996), 971–1009 | MR
[6] Kirillov A.A., “Infinite dimensional Lie groups: their orbits, invariants and representations. The geometry of moments”, Twistor geometry and nonlinear systems (Primorsko (Bulg.), 1980), Lect. Notes Math., 970, Springer, Berlin, 1982, 101–123 | MR
[7] Kirillov A.A., Yurev D.V., “Kelerova geometriya beskonechnomernogo odnorodnogo prostranstva $M=\mathrm{Diff}_+(S^1)/\mathrm{Rot}(S^1)$”, Funkts. anal. i ego pril., 21:4 (1987), 35–46 | MR | Zbl
[8] Lazutkin V.F., Pankratova T.F., “Normalnye formy i versalnye deformatsii dlya uravneniya Khilla”, Funkts. anal. i ego pril., 9:4 (1975), 41–48 | MR | Zbl
[9] Lempert L., “The Virasoro group as a complex manifold”, Math. Res. Lett., 2 (1995), 479–495 | MR | Zbl
[10] Nag S., The complex analytic theory of Teichmüller spaces, J. Wiley and Sons, New York, 1988 | MR
[11] Nag S., “A period mapping in universal Teichmüller space”, Bull. Amer. Math. Soc., 26 (1992), 280–287 | DOI | MR | Zbl
[12] Nag S., Sullivan D., “Teichmüller theory and the universal period mapping via quantum calculus and the $H^{1/2}$ space on the circle”, Osaka J. Math., 32 (1995), 1–34 | MR | Zbl
[13] Nag S., Verjovsky A., “$\mathrm{Diff}(S^1)$ and the Teichmüller spaces”, Commun. Math. Phys., 130 (1990), 123–138 | DOI | MR | Zbl
[14] Pfluger A., “Über die Konstruktion Riemannscher Flächen durch Verhäftung”, J. Indian Math. Soc., 24 (1961), 401–412 | MR | Zbl
[15] Pressley A., Segal G., Loop groups, Clarendon Press, Oxford, 1986 ; Pressli E., Sigal G., Gruppy petel, Mir, M., 1990 | MR | Zbl | MR
[16] Segal G., “Unitary representations of some infinite-dimensional groups”, Commun. Math. Phys., 80 (1981), 301–392 | DOI | MR
[17] Sergeev A.G., Kelerova geometriya prostranstv petel, MTsNMO, M., 2001
[18] Witten E., “Coadjoint orbits of the Virasoro group”, Commun. Math. Phys., 114 (1988), 1–53 | DOI | MR | Zbl