K\"ahler Geometry of the Universal Teichm\"uller Space and Coadjoint Orbits of the Virasoro Group
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and applications, Tome 253 (2006), pp. 175-203.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Kähler geometry of the universal Teichmüller space and related infinite-dimensional Kähler manifolds is studied. The universal Teichmüller space $\mathcal T$ may be realized as an open subset in the complex Banach space of holomorphic quadratic differentials in the unit disc. The classical Teichmüller spaces $T(G)$, where $G$ is a Fuchsian group, are contained in $\mathcal T$ as complex Kähler submanifolds. The homogeneous spaces $\text {Diff}_+(S^1)/\text {M\"ob}(S^1)$ and $\text {Diff}_+(S^1)/S^1$ of the diffeomorphism group $\text {Diff}_+(S^1)$ of the unit circle are closely related to $\mathcal T$. They are Kähler Frechet manifolds that can be realized as coadjoint orbits of the Virasoro group (and exhaust all coadjoint orbits of this group that have the Kähler structure).
@article{TM_2006_253_a13,
     author = {A. G. Sergeev},
     title = {K\"ahler {Geometry} of the {Universal} {Teichm\"uller} {Space} and {Coadjoint} {Orbits} of the {Virasoro} {Group}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {175--203},
     publisher = {mathdoc},
     volume = {253},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2006_253_a13/}
}
TY  - JOUR
AU  - A. G. Sergeev
TI  - K\"ahler Geometry of the Universal Teichm\"uller Space and Coadjoint Orbits of the Virasoro Group
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2006
SP  - 175
EP  - 203
VL  - 253
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2006_253_a13/
LA  - ru
ID  - TM_2006_253_a13
ER  - 
%0 Journal Article
%A A. G. Sergeev
%T K\"ahler Geometry of the Universal Teichm\"uller Space and Coadjoint Orbits of the Virasoro Group
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2006
%P 175-203
%V 253
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2006_253_a13/
%G ru
%F TM_2006_253_a13
A. G. Sergeev. K\"ahler Geometry of the Universal Teichm\"uller Space and Coadjoint Orbits of the Virasoro Group. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and applications, Tome 253 (2006), pp. 175-203. http://geodesic.mathdoc.fr/item/TM_2006_253_a13/

[1] Ahlfors L.V., Lectures on quasiconformal mappings, Van Nostrand, Princeton, 1966 ; Alfors L., Lektsii po kvazikonformnym otobrazheniyam, Mir, M., 1969 | MR | Zbl | MR

[2] Bowen R., “Hausdorff dimension of quasicircles”, Publ. Math. IHES, 50 (1979), 259–273 | MR

[3] Douady A., Earle C.J., “Conformally natural extension of homeomorphisms of the circle”, Acta math., 157 (1986), 23–48 | DOI | MR | Zbl

[4] Earle C.J., Eells J., “On the differential geometry of Teichmüller spaces”, J. Anal. Math., 19 (1967), 35–52 | DOI | MR | Zbl

[5] Guieu L., “Nombre de rotation, structures géométriques sur un cercle et groupe de Bott–Virasoro”, Ann. Inst. Fourier, 46 (1996), 971–1009 | MR

[6] Kirillov A.A., “Infinite dimensional Lie groups: their orbits, invariants and representations. The geometry of moments”, Twistor geometry and nonlinear systems (Primorsko (Bulg.), 1980), Lect. Notes Math., 970, Springer, Berlin, 1982, 101–123 | MR

[7] Kirillov A.A., Yurev D.V., “Kelerova geometriya beskonechnomernogo odnorodnogo prostranstva $M=\mathrm{Diff}_+(S^1)/\mathrm{Rot}(S^1)$”, Funkts. anal. i ego pril., 21:4 (1987), 35–46 | MR | Zbl

[8] Lazutkin V.F., Pankratova T.F., “Normalnye formy i versalnye deformatsii dlya uravneniya Khilla”, Funkts. anal. i ego pril., 9:4 (1975), 41–48 | MR | Zbl

[9] Lempert L., “The Virasoro group as a complex manifold”, Math. Res. Lett., 2 (1995), 479–495 | MR | Zbl

[10] Nag S., The complex analytic theory of Teichmüller spaces, J. Wiley and Sons, New York, 1988 | MR

[11] Nag S., “A period mapping in universal Teichmüller space”, Bull. Amer. Math. Soc., 26 (1992), 280–287 | DOI | MR | Zbl

[12] Nag S., Sullivan D., “Teichmüller theory and the universal period mapping via quantum calculus and the $H^{1/2}$ space on the circle”, Osaka J. Math., 32 (1995), 1–34 | MR | Zbl

[13] Nag S., Verjovsky A., “$\mathrm{Diff}(S^1)$ and the Teichmüller spaces”, Commun. Math. Phys., 130 (1990), 123–138 | DOI | MR | Zbl

[14] Pfluger A., “Über die Konstruktion Riemannscher Flächen durch Verhäftung”, J. Indian Math. Soc., 24 (1961), 401–412 | MR | Zbl

[15] Pressley A., Segal G., Loop groups, Clarendon Press, Oxford, 1986 ; Pressli E., Sigal G., Gruppy petel, Mir, M., 1990 | MR | Zbl | MR

[16] Segal G., “Unitary representations of some infinite-dimensional groups”, Commun. Math. Phys., 80 (1981), 301–392 | DOI | MR

[17] Sergeev A.G., Kelerova geometriya prostranstv petel, MTsNMO, M., 2001

[18] Witten E., “Coadjoint orbits of the Virasoro group”, Commun. Math. Phys., 114 (1988), 1–53 | DOI | MR | Zbl