Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2006_253_a11, author = {S. Yu. Orevkov}, title = {Algebraic {Curve} in the {Unit} {Ball} in $\mathbb C^2$ {That} {Passes} through the {Origin} and {All} of {Whose} {Boundary} {Components} {Are} {Arbitrarily} {Short}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {135--157}, publisher = {mathdoc}, volume = {253}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2006_253_a11/} }
TY - JOUR AU - S. Yu. Orevkov TI - Algebraic Curve in the Unit Ball in $\mathbb C^2$ That Passes through the Origin and All of Whose Boundary Components Are Arbitrarily Short JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2006 SP - 135 EP - 157 VL - 253 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2006_253_a11/ LA - ru ID - TM_2006_253_a11 ER -
%0 Journal Article %A S. Yu. Orevkov %T Algebraic Curve in the Unit Ball in $\mathbb C^2$ That Passes through the Origin and All of Whose Boundary Components Are Arbitrarily Short %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2006 %P 135-157 %V 253 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2006_253_a11/ %G ru %F TM_2006_253_a11
S. Yu. Orevkov. Algebraic Curve in the Unit Ball in $\mathbb C^2$ That Passes through the Origin and All of Whose Boundary Components Are Arbitrarily Short. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and applications, Tome 253 (2006), pp. 135-157. http://geodesic.mathdoc.fr/item/TM_2006_253_a11/
[1] Beloshapka V.K., “Ob odnom metricheskom svoistve analiticheskikh mnozhestv”, Izv. AN SSSR. Ser. mat., 40 (1976), 1409–1414 | Zbl
[2] Chirka E.M., “Nekotorye nereshennye zadachi mnogomernogo kompleksnogo analiza”, Kompleksnyi analiz v sovremennoi matematike, K 80-letiyu so dnya rozhdeniya B.V. Shabata, Fazis, M., 2001, 265–272 | MR
[3] Eroshkin O.G., “Ob odnom topologicheskom svoistve kraya analiticheskogo podmnozhestva strogo psevdovypukloi oblasti v $\mathbb C^2$”, Mat. zametki, 49:5 (1991), 149–151 | MR | Zbl
[4] Jöricke B., “A Cantor set in the unit sphere in $\mathbb C^2$ with large polynomial hull”, Michigan Math. J., 53 (2005), 189–207 | DOI | MR | Zbl