On the Fabry Ratio Theorem for Orthogonal Series
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and applications, Tome 253 (2006), pp. 14-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the Fabry ratio theorem for power series is valid under quite general assumptions and for orthogonal series.
@article{TM_2006_253_a1,
     author = {V. I. Buslaev},
     title = {On the {Fabry} {Ratio} {Theorem} for {Orthogonal} {Series}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {14--29},
     publisher = {mathdoc},
     volume = {253},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2006_253_a1/}
}
TY  - JOUR
AU  - V. I. Buslaev
TI  - On the Fabry Ratio Theorem for Orthogonal Series
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2006
SP  - 14
EP  - 29
VL  - 253
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2006_253_a1/
LA  - ru
ID  - TM_2006_253_a1
ER  - 
%0 Journal Article
%A V. I. Buslaev
%T On the Fabry Ratio Theorem for Orthogonal Series
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2006
%P 14-29
%V 253
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2006_253_a1/
%G ru
%F TM_2006_253_a1
V. I. Buslaev. On the Fabry Ratio Theorem for Orthogonal Series. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and applications, Tome 253 (2006), pp. 14-29. http://geodesic.mathdoc.fr/item/TM_2006_253_a1/

[1] Fabry E., “Sur les points singuliers d'une fonction donnee par son developpement de Taylor”, Ann. Ecole Norm. Super. Paris, 13:3 (1896), 367–399 | MR | Zbl

[2] Biberbakh L., Analiticheskoe prodolzhenie, Nauka, M., 1967 | MR

[3] Gonchar A.A., “Polyusy strok tablitsy Pade i meromorfnoe prodolzhenie funktsii”, Mat. sb., 115:4 (1981), 590–613 | MR | Zbl

[4] Vavilov V.V., “Ob osobykh tochkakh meromorfnoi funktsii, zadannoi svoim ryadom Teilora”, DAN SSSR, 231:6 (1976), 1281–1284 | MR | Zbl

[5] Vavilov V.V., Lopes G., Prokhorov V.A., “Ob odnoi obratnoi zadache dlya strok tablitsy Pade”, Mat. sb., 110:1 (1979), 117–129 | MR

[6] Vavilov V.V., Prokhorov V.A., Suetin S.P., “Polyusy $m$-i stroki tablitsy Pade i osobye tochki funktsii”, Mat. sb., 122:4 (1983), 475–480 | MR | Zbl

[7] Suetin S.P., “Ob odnoi obratnoi zadache dlya $m$-i stroki tablitsy Pade”, Mat. sb., 124:2 (1984), 238–250 | MR | Zbl

[8] Suetin S.P., “Obratnye teoremy ob obobschennykh approksimatsiyakh Pade”, Mat. sb., 109:4 (1979), 629–645 | MR

[9] Buslaev V.I., “Sootnosheniya dlya koeffitsientov i osobye tochki funktsii”, Mat. sb., 131:3 (1986), 357–384 | MR | Zbl

[10] Korovkin P.P., “Asimptoticheskoe predstavlenie polinomov, minimiziruyuschikh integral”, Issledovaniya po sovremennym problemam konstruktivnoi teorii funktsii, Fizmatgiz, M., 1961, 273–276 | MR

[11] Rakhmanov E.A., “Ob asimptotike otnosheniya ortogonalnykh mnogochlenov”, Mat. sb., 103:2 (1977), 237–252 | MR | Zbl

[12] Sege G., Ortogonalnye mnogochleny, Fizmatgiz, M., 1962

[13] Geronimus Ya.L., Mnogochleny, ortogonalnye na okruzhnosti i otrezke, Fizmatgiz, M., 1958 | Zbl

[14] Smirnov V.I., Lebedev N.A., Konstruktivnaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1964 | MR

[15] Poincaré H., “Sur les équations linéaires aux différentielles et aux différences finies”, Amer. J. Math., 7 (1885), 203–258 | DOI | MR

[16] Kakehashi T., “The decomposition of coefficients of power-series and the divergence of interpolation polynomials”, Proc. Japan Acad. A, 31:8 (1955), 517–525 | DOI | MR