The Integral Cohomology of Toric Manifolds
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 61-70

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the integral cohomology of a smooth, not necessarily compact, toric variety $X_\Sigma$ is determined by the Stanley–Reisner ring of $\Sigma$. This follows from a formality result for singular cochains on the Borel construction of $X_\Sigma$. As a onsequence, we show that the cycle map from Chow groups to Borel–Moore homology is split injective.
@article{TM_2006_252_a6,
     author = {M. Franz},
     title = {The {Integral} {Cohomology} of {Toric} {Manifolds}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {61--70},
     publisher = {mathdoc},
     volume = {252},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2006_252_a6/}
}
TY  - JOUR
AU  - M. Franz
TI  - The Integral Cohomology of Toric Manifolds
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2006
SP  - 61
EP  - 70
VL  - 252
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2006_252_a6/
LA  - en
ID  - TM_2006_252_a6
ER  - 
%0 Journal Article
%A M. Franz
%T The Integral Cohomology of Toric Manifolds
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2006
%P 61-70
%V 252
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2006_252_a6/
%G en
%F TM_2006_252_a6
M. Franz. The Integral Cohomology of Toric Manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 61-70. http://geodesic.mathdoc.fr/item/TM_2006_252_a6/