Configuration Spaces of Labeled Particles and Finite Eilenberg–MacLane Complexes
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 37-54
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For any Coxeter system $(W,S)$, the group $W$ acts naturally on the complement of the associated complex hyperplane arrangement. By the well-known conjecture, the orbit space of this action is the classifying space of the corresponding Artin group. We describe some properties of configuration spaces of particles labeled by elements of a partial monoid and use them to prove that the orbit space mentioned in the conjecture is the classifying space of the positive Artin monoid. In particular, the conjecture reduces to a problem concerning the group completion of this monoid.
@article{TM_2006_252_a4,
     author = {N. E. Dobrinskaya},
     title = {Configuration {Spaces} of {Labeled} {Particles} and {Finite} {Eilenberg{\textendash}MacLane} {Complexes}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {37--54},
     year = {2006},
     volume = {252},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2006_252_a4/}
}
TY  - JOUR
AU  - N. E. Dobrinskaya
TI  - Configuration Spaces of Labeled Particles and Finite Eilenberg–MacLane Complexes
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2006
SP  - 37
EP  - 54
VL  - 252
UR  - http://geodesic.mathdoc.fr/item/TM_2006_252_a4/
LA  - ru
ID  - TM_2006_252_a4
ER  - 
%0 Journal Article
%A N. E. Dobrinskaya
%T Configuration Spaces of Labeled Particles and Finite Eilenberg–MacLane Complexes
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2006
%P 37-54
%V 252
%U http://geodesic.mathdoc.fr/item/TM_2006_252_a4/
%G ru
%F TM_2006_252_a4
N. E. Dobrinskaya. Configuration Spaces of Labeled Particles and Finite Eilenberg–MacLane Complexes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 37-54. http://geodesic.mathdoc.fr/item/TM_2006_252_a4/

[1] Burbaki N., Gruppy i algebry Li, Mir, M., 1972 | MR | Zbl

[2] Dobrinskaya N.E., Prostranstva orbit svobodnykh deistvii grupp na dopolneniyakh k konfiguratsiyam podprostranstv, Dis. ... kand. fiz.-mat. nauk, MGU, M., 2003

[3] Dobrinskaya N.E., “Gipoteza Arnolda–Toma–Fama i klassifitsiruyuschee prostranstvo polozhitelnogo monoida Artina”, UMN, 57:6 (2002), 181–182 | MR

[4] Barratt M., Priddy S., “On the homology of non-connected monoids and their associated groups”, Comment. Math. Helv., 47 (1972), 1–14 | DOI | MR | Zbl

[5] Brieskorn E., “Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungsgruppe”, Invent. math., 12 (1971), 57–61 | DOI | MR | Zbl

[6] Brieskorn E., Saito K., “Artin-Gruppen und Coxeter-Gruppen”, Invent. math., 17 (1972), 245–271 | DOI | MR | Zbl

[7] Charney R., Davis M.W., “The $K(\pi,1)$-problem for hyperplane complements associated to infinite reflection groups”, J. Amer. Math. Soc., 8:3 (1995), 597–627 | DOI | MR | Zbl

[8] Charney R., Davis M.W., “Finite $K(\pi,1)$'s for Artin groups”, Prospects in topology, Ann. Math. Stud., 138, ed. F. Quinn, Princeton Univ. Press, Princeton, 1995, 110–124 | MR | Zbl

[9] Deligne P., “Les immeubles des groupes de tresses généralises”, Invent. math., 17 (1972), 273–302 | DOI | MR | Zbl

[10] Fox R., Neuwirth L., “The braid groups”, Math. scand., 10 (1962), 119–126 | MR | Zbl

[11] Garside F.A., “The braid group and other groups”, Quart. J. Math. Oxford, 20 (1969), 235–254 | DOI | MR | Zbl

[12] Guest M.A., Kozlowski A., Yamaguchi K., “Spaces of polynomials of bounded multiplicity”, Fund. math., 161 (1999), 93–117 | MR | Zbl

[13] Haefliger A., “Complexes of groups and orbihedra”, Group theory from a geometrical viewpoint, Proc. ICTP (Trieste, 1990), World Sci., Singapore, 1991, 504–540 | MR | Zbl

[14] James I.M., “Reduced product spaces”, Ann. Math. Ser. 2, 62:1 (1955), 170–197 | DOI | MR | Zbl

[15] Kallel S., “An analog of the May–Milgram model for configuration spaces with multiplicities”, Contemp. Math., 279 (2001), 135–149 | MR | Zbl

[16] Kallel S., “Interactions and collisions from the homotopy point of view”, Bull. Belg. Math. Soc. (to appear)

[17] May J.P., The geometry of iterated loop spaces, Lect. Notes Math., 271, Springer, Berlin, 1972 | MR | Zbl

[18] McDuff D., “Configuration spaces of positive and negative particles”, Topology, 14 (1975), 91–107 | DOI | MR | Zbl

[19] McDuff D., “On the classifying spaces of discrete monoids”, Topology, 18 (1979), 313–320 | DOI | MR | Zbl

[20] McDuff D., Segal G., “Homology fibrations and the ‘group-completion’ theorem”, Invent. math., 31 (1976), 279–284 | DOI | MR | Zbl

[21] Milgram R.J., “Iterated loop spaces”, Ann. Math. Ser. 2, 84 (1966), 386–403 | DOI | MR | Zbl

[22] Paris L., “Artin monoids inject in their groups”, Comment. Math. Helv., 77:3 (2002), 609–637 | DOI | MR | Zbl

[23] Salvatore P., “Configuration spaces with summable labels”, Cohomological methods in homotopy theory, Proc. Barcelona Conf. on Algebraic Topology (Bellaterra, 1998), Progr. Math., 196, Birkhäuser, Basel, 2001, 375–395 | MR | Zbl

[24] Segal G., “Configuration-spaces and iterated loop-spaces”, Invent. math., 21 (1973), 213–221 | DOI | MR | Zbl

[25] Shimakawa K., “Configuration spaces with partially summable labels and homology theories”, Math. J. Okayama Univ., 43 (2001), 43–72 | MR | Zbl

[26] Steenrod N.E., “Milgram's classifying space of a topological group”, Topology, 7 (1968), 349–368 | DOI | MR | Zbl

[27] Tits J., “Le problème des mots dans les groupes de Coxeter”, Symp. Math. INDAM (Rome, 1967/68), 1, Acad. Press, London, 1969, 175–185 | MR | Zbl