Variations on the Cohomology of Loop Spaces on Generalized Homogeneous Spaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 217-223.

Voir la notice de l'article provenant de la source Math-Net.Ru

The cohomology of the space of loops on generalized homogeneous spaces is determined by using the Eilenberg–Moore spectral sequence. This generalizes classical results for homogeneous spaces of compact Lie groups.
@article{TM_2006_252_a17,
     author = {F. Neumann},
     title = {Variations on the {Cohomology} of {Loop} {Spaces} on {Generalized} {Homogeneous} {Spaces}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {217--223},
     publisher = {mathdoc},
     volume = {252},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2006_252_a17/}
}
TY  - JOUR
AU  - F. Neumann
TI  - Variations on the Cohomology of Loop Spaces on Generalized Homogeneous Spaces
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2006
SP  - 217
EP  - 223
VL  - 252
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2006_252_a17/
LA  - en
ID  - TM_2006_252_a17
ER  - 
%0 Journal Article
%A F. Neumann
%T Variations on the Cohomology of Loop Spaces on Generalized Homogeneous Spaces
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2006
%P 217-223
%V 252
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2006_252_a17/
%G en
%F TM_2006_252_a17
F. Neumann. Variations on the Cohomology of Loop Spaces on Generalized Homogeneous Spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 217-223. http://geodesic.mathdoc.fr/item/TM_2006_252_a17/

[1] Borel A., “Sur la cohomologie des espaces fibrés principeaux et des espaces homogènes de groupes de Lie compacts”, Ann. Math., 57 (1953), 115–207 | DOI | MR | Zbl

[2] Baum P.F., “On the cohomology of homogeneous spaces”, Topology, 7 (1968), 15–38 | DOI | MR | Zbl

[3] Dwyer W.G., Wilkerson C.W., “Homotopy fixed point methods for Lie groups and finite loop spaces”, Ann. Math., 139 (1994), 395–442 | DOI | MR | Zbl

[4] Gugenheim V.K.A.M., May J.P., On the theory and applications of differential torsion products, Mem. AMS, 142, Amer. Math. Soc., Providence (RI), 1974 | MR

[5] Kac V.G., “Torsion in cohomology of compact Lie groups and Chow rings of reductive algebraic groups”, Invent. math., 80 (1985), 69–79 | DOI | MR | Zbl

[6] Kuribayashi K., “The cohomology ring of the spaces of loops on Lie groups and homogeneous spaces”, Pacif. J. Math., 163:2 (1994), 361–391 | MR | Zbl

[7] May J.P., Neumann F., “On the cohomology of generalized homogeneous spaces”, Proc. Amer. Math. Soc., 130 (2002), 267–270 | DOI | MR | Zbl

[8] Milnor J.W., Moore J.C., “On the structure of Hopf algebras”, Ann. Math., 81 (1965), 211–264 | DOI | MR | Zbl

[9] Neumann F., “On the cohomology of homogeneous spaces of finite loop spaces and the Eilenberg–Moore spectral sequence”, J. Pure and Appl. Algebra, 140 (1999), 261–287 | DOI | MR | Zbl

[10] Neumann F., “Torsion in the cohomology of finite loop spaces and the Eilenberg–Moore spectral sequence”, Topol. and Appl., 100 (2000), 133–150 | DOI | MR | Zbl

[11] Rector D., “Subgroups of finite dimensional topological groups”, J. Pure and Appl. Algebra, 1 (1971), 253–273 | DOI | MR | Zbl

[12] Smith L., “The cohomology of stable two stage Postnikov systems”, Ill. J. Math., 11 (196), 310–329 | MR | Zbl

[13] Smith L., “Homological algebra and the Eilenberg–Moore spectral sequence”, Trans. Amer. Math. Soc., 129 (1967), 58–93 | DOI | MR | Zbl

[14] Smith L., “Cohomology of $\Omega(G/U)$”, Proc. Amer. Math. Soc., 19 (1968), 399–404 | DOI | MR | Zbl

[15] Smith L., “On the Eilenberg–Moore spectral sequence”, Algebraic topology, Proc. Symp. Pure Math., 22, Amer. Math. Soc., Providence (RI), 1971, 231–246 | MR

[16] Smith L., Polynomial invariants of finite groups, Res. Notes Math., 6, A.K. Peters, Wellesley (MA), 1995 | MR | Zbl

[17] Tate J., “Homology of Noetherian rings and local rings”, Ill. J. Math., 1 (1957), 14–27 | MR | Zbl