Deformations of Filiform Lie Algebras and Symplectic Structures
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 194-216

Voir la notice de l'article provenant de la source Math-Net.Ru

We study symplectic structures on filiform Lie algebras, which are nilpotent Lie algebras with the maximal length of the descending central sequence. Let $\mathfrak g$ be a symplectic filiform Lie algebra and $\dim \mathfrak g=2k\ge 12$. Then $\mathfrak g$ is isomorphic to some $\mathbb N$-filtered deformation either of $\mathfrak m_0(2k)$ (defined by the structure relations $[e_1,e_i]=e_{i+1}$, $i=2,\dots ,2k-1$) or of $\mathcal V_{2k}$, the quotient of the positive part of the Witt algebra $W_+$ by the ideal of elements of degree greater than $2k$. We classify $\mathbb N$-filtered deformations of $\mathcal V_n$: $[e_i,e_j]=(j-i)e_{i+1}+\sum _{l\ge 1}c_{ij}^l e_{i+j+l}$. For $\dim \mathfrak g=n \ge 16$, the moduli space $\mathcal M_n$ of these deformations is the weighted projective space $\mathbb K\mathrm P^4(n-11,n-10,n-9,n-8,n-7)$. For even $n$, the subspace of symplectic Lie algebras is determined by a single linear equation.
@article{TM_2006_252_a16,
     author = {D. V. Millionshchikov},
     title = {Deformations of {Filiform} {Lie} {Algebras} and {Symplectic} {Structures}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {194--216},
     publisher = {mathdoc},
     volume = {252},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2006_252_a16/}
}
TY  - JOUR
AU  - D. V. Millionshchikov
TI  - Deformations of Filiform Lie Algebras and Symplectic Structures
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2006
SP  - 194
EP  - 216
VL  - 252
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2006_252_a16/
LA  - ru
ID  - TM_2006_252_a16
ER  - 
%0 Journal Article
%A D. V. Millionshchikov
%T Deformations of Filiform Lie Algebras and Symplectic Structures
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2006
%P 194-216
%V 252
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2006_252_a16/
%G ru
%F TM_2006_252_a16
D. V. Millionshchikov. Deformations of Filiform Lie Algebras and Symplectic Structures. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 194-216. http://geodesic.mathdoc.fr/item/TM_2006_252_a16/