Cohomology of Open Torus Manifolds
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 158-166

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of an open torus manifold is introduced. A compact open torus manifold is a torus manifold introduced earlier. It is shown that the equivariant cohomology ring of an open torus manifold $M$ is the face ring of a simplicial poset when every face of the orbit space $Q$ is acyclic. This result extends an earlier result by Masuda and Panov, and the proof here is more direct. Reisner's theorem is then applied to our setting, and a necessary and sufficient condition is given for the equivariant cohomology ring of $M$ to be Cohen–Macaulay in terms of the orbit space $Q$.
@article{TM_2006_252_a13,
     author = {M. Masuda},
     title = {Cohomology of {Open} {Torus} {Manifolds}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {158--166},
     publisher = {mathdoc},
     volume = {252},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2006_252_a13/}
}
TY  - JOUR
AU  - M. Masuda
TI  - Cohomology of Open Torus Manifolds
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2006
SP  - 158
EP  - 166
VL  - 252
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2006_252_a13/
LA  - en
ID  - TM_2006_252_a13
ER  - 
%0 Journal Article
%A M. Masuda
%T Cohomology of Open Torus Manifolds
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2006
%P 158-166
%V 252
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2006_252_a13/
%G en
%F TM_2006_252_a13
M. Masuda. Cohomology of Open Torus Manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 158-166. http://geodesic.mathdoc.fr/item/TM_2006_252_a13/