Hochschild Cohomology and Higher Order Extensions of Associative Algebras
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 150-157
Cet article a éte moissonné depuis la source Math-Net.Ru
The $n$th Hochschild cohomology group is described by $(n-2)$-extensions (Theorem 1). When $n=2,3$, the theorem reduces to the well-known classical results; for $n=1$, we get a description of the group of derivations by extensions; and for $n\ge 4$, this gives us a new description of cohomology groups. One can consider this theorem as an alternative definition of cohomology theory. So, one has some kind of hint to define cohomology theory for various algebraic structures.
@article{TM_2006_252_a12,
author = {R. T. Kurdiani},
title = {Hochschild {Cohomology} and {Higher} {Order} {Extensions} of {Associative} {Algebras}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {150--157},
year = {2006},
volume = {252},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TM_2006_252_a12/}
}
R. T. Kurdiani. Hochschild Cohomology and Higher Order Extensions of Associative Algebras. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 150-157. http://geodesic.mathdoc.fr/item/TM_2006_252_a12/
[1] Hochschild G., “On the cohomology groups of an associative algebra”, Ann. Math. Ser. 2, 46 (1945), 58–67 | DOI | MR | Zbl
[2] Husemoller D., Moore J.C., Stasheff J., “Differential homological algebra and homogeneous spaces”, J. Pure and Appl. Algebra, 5 (1974), 113–185 | DOI | MR | Zbl
[3] Kurdiani R.T., “Kogomologii Khokhshilda i rasshireniya”, UMN, 60:5 (2005), 169–170 | MR | Zbl
[4] Shukla U., “Cohomologie des algèbres associatives”, Ann. Sci. École Norm. Super. Sér. 3, 78 (1961), 163–209 | MR | Zbl