Virtual Knots and Links
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 114-133

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is an introduction to the subject of virtual knot theory and presents a discussion of some new specific theorems about virtual knots. The new results are as follows: Using a 3-dimensional topology approach, we prove that if a connected sum of two virtual knots $K_1$ and $K_2$ is trivial, then so are both $K_1$ and $K_2$. We establish an algorithm for recognizing virtual links that is based on the Haken–Matveev technique.
@article{TM_2006_252_a10,
     author = {L. H. Kaufman and V. O. Manturov},
     title = {Virtual {Knots} and {Links}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {114--133},
     publisher = {mathdoc},
     volume = {252},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2006_252_a10/}
}
TY  - JOUR
AU  - L. H. Kaufman
AU  - V. O. Manturov
TI  - Virtual Knots and Links
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2006
SP  - 114
EP  - 133
VL  - 252
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2006_252_a10/
LA  - ru
ID  - TM_2006_252_a10
ER  - 
%0 Journal Article
%A L. H. Kaufman
%A V. O. Manturov
%T Virtual Knots and Links
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2006
%P 114-133
%V 252
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2006_252_a10/
%G ru
%F TM_2006_252_a10
L. H. Kaufman; V. O. Manturov. Virtual Knots and Links. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 114-133. http://geodesic.mathdoc.fr/item/TM_2006_252_a10/