Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2006_252_a1, author = {S. V. Alenov and V. P. Leksin}, title = {On {Diagram} {Formulas} for {Knot} {Invariants}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {10--17}, publisher = {mathdoc}, volume = {252}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2006_252_a1/} }
S. V. Alenov; V. P. Leksin. On Diagram Formulas for Knot Invariants. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 10-17. http://geodesic.mathdoc.fr/item/TM_2006_252_a1/
[1] Bar-Natan D., “On the Vassiliev knot invariants”, Topology, 34 (1995), 423–472 | DOI | MR | Zbl
[2] Vasilev V.A., Topologiya dopolnenii k diskriminantam, Fazis, M., 1997 | MR
[3] Kontsevich M., “Vassiliev's knot invariants”, Adv. Sov. Math., 16 (1993), 137–150 | MR | Zbl
[4] Lannes J., “Sur les invariants de Vassiliev de degreé inferieur ou égal à 3”, Enseign. Math., 39 (1993), 295–316 | MR | Zbl
[5] Östlund O.-P., A combinatorial approach to Vassiliev knot invariants, Preprint, Uppsala Univ., 1997
[6] Polyak M., Viro O., “Gauss diagram formulas for Vassiliev invariants”, Intern. Math. Res. Not., 11 (1994), 445–453 | DOI | MR | Zbl
[7] Reidemeister K., Knot theory, Chelsea Publ. Co., New York, 1948
[8] Tyurina S.D., “Diagrammnye formuly tipa Viro–Polyaka dlya invariantov konechnogo poryadka”, UMN, 54:3 (1999), 187–188 | MR
[9] Vassiliev V.A., “Combinatorial formulas for sohomology of knot spases”, Moscow Math. J., 1:1 (2001), 91–123 | MR | Zbl
[10] Allënov S.V., “Diagrammno-strelochnye formuly invariantov uzlov chetvertogo poryadka”, Fund. i prikl. matematika, 11:5 (2005), 3–17 | MR