@article{TM_2005_251_a4,
author = {M. Wolf and A. D. Popov and A. G. Sergeev},
title = {Nontrivial {Solutions} of {Seiberg{\textendash}Witten} {Equations} on the {Noncommutative} {4-Dimensional} {Euclidean} {Space}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {127--138},
year = {2005},
volume = {251},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2005_251_a4/}
}
TY - JOUR AU - M. Wolf AU - A. D. Popov AU - A. G. Sergeev TI - Nontrivial Solutions of Seiberg–Witten Equations on the Noncommutative 4-Dimensional Euclidean Space JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2005 SP - 127 EP - 138 VL - 251 UR - http://geodesic.mathdoc.fr/item/TM_2005_251_a4/ LA - ru ID - TM_2005_251_a4 ER -
%0 Journal Article %A M. Wolf %A A. D. Popov %A A. G. Sergeev %T Nontrivial Solutions of Seiberg–Witten Equations on the Noncommutative 4-Dimensional Euclidean Space %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2005 %P 127-138 %V 251 %U http://geodesic.mathdoc.fr/item/TM_2005_251_a4/ %G ru %F TM_2005_251_a4
M. Wolf; A. D. Popov; A. G. Sergeev. Nontrivial Solutions of Seiberg–Witten Equations on the Noncommutative 4-Dimensional Euclidean Space. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Nonlinear dynamics, Tome 251 (2005), pp. 127-138. http://geodesic.mathdoc.fr/item/TM_2005_251_a4/
[1] Bak D., “Exact multi-vortex solutions in noncommutative Abelian–Higgs theory”, Phys. Lett. B., 495 (2000), 251–255 ; arXiv: hep-th/0008204 | DOI | MR | Zbl
[2] Berezin F. A., Shubin M. A., Uravnenie Shrëdingera, MGU, M., 1983 | MR
[3] Connes A., Noncommutative geometry, Acad. Press, London, San Diego, 1994 | MR | Zbl
[4] Douglas M. R., Nekrasov N. A., “Noncommutative field theory”, Rev. Mod. Phys., 73 (2001), 977–1029 ; arXiv: hep-th/0106048 | DOI | MR
[5] Gracia-Bondia J. M., Varilly J. C., Figueroa H., Elements of noncommutative geometry, Birkhäuser, Boston, Basel, Berlin, 2001 | MR | Zbl
[6] Jatkar D. P., Mandal G., Wadia S. R., “Nielsen–Olesen vortices in noncommutative abelian Higgs model”, J. High Energy Phys., 2000, no. 09, Pap. 018 ; arXiv: hep-th/0007078 | MR
[7] Nekrasov N. A., Schwarz A. S., “Instantons on noncommutative $\mathbb{R}^4$ and $(2,0)$ superconformal six-dimensional theory”, Commun. Math. Phys., 198 (1998), 689–703 ; arXiv: hep-th/9802068 | DOI | MR | Zbl
[8] Popov A. D., Sergeev A. G., Wolf M., “Seiberg–Witten monopole equations on noncommutative $R^4$”, J. Math. Phys., 44 (2003), 4527–4554 ; arXiv: hep-th/0304263 | DOI | MR | Zbl
[9] Salamon D., Spin geometry and Seiberg–Witten invariants, Preprint, Warwick Univ., Warwick, 1996 | MR
[10] Sergeev A. G., Vortices and Seiberg–Witten equations, Nagoya Math. Lect., 5, Nagoya Univ., Nagoya, 2002