Buffer Phenomenon in Nonlinear Physics
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 250 (2005), pp. 112-182.

Voir la notice de l'article provenant de la source Math-Net.Ru

The buffer phenomenon is a property of a mathematical model of a nonlinear distributed system to have any predetermined finite number of attractors of the same type (stable equilibrium states, cycles, tori, etc.) for an appropriate choice of its parameters. A rigorous mathematical investigation of the buffer phenomenon has become possible due to the application and development of the apparatus of asymptotic analysis. The buffer property is typical for a wide class of mathematical models that describe many nonlinear processes in physics (radio physics, mechanics, optics, and combustion theory) and are represented by boundary value problems for systems of partial differential equations. The relationship between the buffer phenomenon and the onset of turbulence and dynamical chaos is traced.
@article{TM_2005_250_a6,
     author = {A. Yu. Kolesov and E. F. Mishchenko and N. Kh. Rozov},
     title = {Buffer {Phenomenon} in {Nonlinear} {Physics}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {112--182},
     publisher = {mathdoc},
     volume = {250},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2005_250_a6/}
}
TY  - JOUR
AU  - A. Yu. Kolesov
AU  - E. F. Mishchenko
AU  - N. Kh. Rozov
TI  - Buffer Phenomenon in Nonlinear Physics
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2005
SP  - 112
EP  - 182
VL  - 250
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2005_250_a6/
LA  - ru
ID  - TM_2005_250_a6
ER  - 
%0 Journal Article
%A A. Yu. Kolesov
%A E. F. Mishchenko
%A N. Kh. Rozov
%T Buffer Phenomenon in Nonlinear Physics
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2005
%P 112-182
%V 250
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2005_250_a6/
%G ru
%F TM_2005_250_a6
A. Yu. Kolesov; E. F. Mishchenko; N. Kh. Rozov. Buffer Phenomenon in Nonlinear Physics. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 250 (2005), pp. 112-182. http://geodesic.mathdoc.fr/item/TM_2005_250_a6/

[1] Vitt A. A., “Raspredelennye avtokolebatelnye sistemy”, ZhTF, 4:1 (1934), 144–157

[2] Migulin V. V., Medvedev V. I., Mustel E. R., Parygin V. N., Osnovy teorii kolebanii, Nauka, M., 1988, 392 pp.

[3] Landa P. S., Nelineinye kolebaniya i volny, Nauka, M., 1997, 496 pp. | MR

[4] Kolesov A. Yu., Rozov N. Kh., “Asimptoticheskaya teoriya kolebanii v sisteme Vitta”, Itogi nauki i tekhniki. Sovremennaya matematika i ee prilozheniya. Tematich. obzory, 67, VINITI, M., 1999, 5–68 | MR

[5] Kolesov Yu. S., “Ob odnoi bifurkatsionnoi teoreme v teorii avtokolebanii raspredelennykh sistem”, Dif. uravneniya, 21:10 (1985), 1709–1713 | MR | Zbl

[6] Kolesov Yu. S., “Zadacha parazit–khozyain”, Dinamika biologicheskikh populyatsii, Mezhvuz. sb., Gork. un-t, Gorkii, 1984, 28–34 | MR

[7] Kolesov Yu. S., “Metod kvazinormalnykh form v zadache ob ustanovivshikhsya rezhimakh parabolicheskikh sistem s maloi diffuziei”, Ukr. mat. zhurn., 39:1 (1987), 27–34 | MR

[8] Kolesov A. Yu., Kolesov Yu. S., “Bifurkatsiya avtokolebanii singulyarno vozmuschennogo volnovogo uravneniya”, DAN SSSR, 315:2 (1990), 281–283 | MR | Zbl

[9] Kolesov Yu. S., “Asimptotika i ustoichivost nelineinykh parametricheskikh kolebanii singulyarno vozmuschennogo telegrafnogo uravneniya”, Mat. sb., 186:10 (1995), 57–72 | MR | Zbl

[10] Kolesov A. Yu., Mischenko E. F., Rozov N. Kh., Asimptoticheskie metody issledovaniya periodicheskikh reshenii nelineinykh giperbolicheskikh uravnenii, Tr. MIAN, 222, Nauka, M., 1998, 192 pp.

[11] Kolesov A. Yu., Rozov N. Kh., Sushko V. G., “Spetsifika avtokolebatelnykh protsessov v rezonansnykh giperbolicheskikh sistemakh”, Fund. i prikl. matematika, 5:2 (1999), 437–473 | MR | Zbl

[12] Kolesov A. Yu., Mischenko E. F., Rozov N. Kh., “Yavlenie bufernosti v rezonansnykh sistemakh giperbolicheskikh uravnenii”, UMN, 55:2 (2000), 95–120 | MR | Zbl

[13] Kolesov A. Yu., Rozov N. Kh., “Yavlenie bufernosti v matematicheskoi modeli generatora Van der Polya s raspredelennymi parametrami”, Izv. RAN. Ser. mat., 65:3 (2001), 67–84 | MR | Zbl

[14] Kolesov A. Yu., Rozov N. Kh., “Yavlenie bufernosti v $RCLG$-avtogeneratore: teoreticheskii analiz i rezultaty eksperimenta”, Tr. MIAN, 233, 2001, 153–207 | MR | Zbl

[15] Kolesov A. Yu., “Suschestvovanie schetnogo chisla ustoichivykh tsiklov v sredakh s dispersiei”, Izv. RAN. Ser. mat., 59:3 (1995), 141–158 | MR | Zbl

[16] Kolesov A. Yu., Rozov N. Kh., “Suschestvovanie schetnogo chisla ustoichivykh tsiklov u obobschennogo kubicheskogo uravneniya Shredingera v ploskoi oblasti”, Izv. RAN. Ser. mat., 67:6 (2003), 137–168 | MR | Zbl

[17] Utkin G. M., “Metod medlenno menyayuschikhsya stoyachikh voln v teorii raspredelennykh avtogeneratorov”, Radiotekhnika i elektronika, 2:6 (1969), 267–276

[18] Azyan Yu. M., Migulin V. V., “Ob avtokolebaniyakh v sistemakh s zapazdyvayuschei obratnoi svyazyu”, Radiotekhnika i elektronika, 1:4 (1956), 126–130

[19] Kolesov A. Yu., Rozov N. Kh., “Yavlenie bufernosti v generatore Van der Polya s zapazdyvaniem”, Dif. uravneniya, 38:2 (2002), 165–176 | MR | Zbl

[20] Kambulov V. F., “Stokhasticheskie avtokolebaniya v odnom generatore s $RC$-raspredelennymi parametrami”, Stokhasticheskie kolebaniya v radiofizike i elektronike: Vtoraya Vsesoyuz. shk., Saratov. un-t, Saratov, 1988, 51–57

[21] Kolesov Yu. S., “Matematicheskaya teoriya $RC$-generatorov s raspredelennymi parametrami v tsepi obratnoi svyazi”, Differentsialnye uravneniya i ikh primenenie, no. 2, In-t fiziki i matematiki AN Lit. SSR, Vilnyus, 1971, 68 s | MR | Zbl

[22] Kambulov V. F., “Garmonicheskie kolebaniya v avtogeneratore s $LCRG$-raspredelennymi parametrami v tsepi obratnoi svyazi”, Radiotekhnika i elektronika, 23:11 (1978), 2321–2326

[23] Kulikov A. N., “Issledovanie odnoi kraevoi zadachi, voznikayuschei v radiofizike”, Issledovaniya po ustoichivosti i teorii kolebanii, Yaroslav. un-t, Yaroslavl, 1976, 67–85

[24] Mitropolskii Yu. A., Lykova O. B., Integralnye mnogoobraziya v nelineinoi mekhanike, Nauka, M., 1973, 512 pp. | MR

[25] Strygin V. V., Sobolev V. A., Razdelenie dvizhenii metodom integralnykh mnogoobrazii, Nauka, M., 1988, 256 pp. | MR | Zbl

[26] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974, 504 pp. | MR | Zbl

[27] Kolesov A. Yu., Rozov N. Kh., “Yavlenie bufernosti v raspredelennykh mekhanicheskikh sistemakh”, PMM, 65:2 (2001), 183–198 | MR | Zbl

[28] Zaslavskii G. M., Sagdeev R. Z., Vvedenie v nelineinuyu fiziku. Ot mayatnika do turbulentnosti i khaosa, Nauka, M., 1988, 368 pp. | MR

[29] Gukenkheimer Dzh., Kholms F., Nelineinye kolebaniya, dinamicheskie sistemy i bifurkatsii vektornykh polei, In-t kompyut. issled., Moskva, Izhevsk, 2002, 560 pp.

[30] Likhtenberg A., Liberman M., Regulyarnaya i stokhasticheskaya dinamika, Merkurii-PRESS, Cherepovets, 2000, 528 pp.

[31] Zaslavskii G. M., Stokhastichnost dinamicheskikh sistem, Nauka, M., 1984, 271 pp. | MR | Zbl

[32] Akhmanov S. A., Vorontsov M. A., Ivanov V. Yu., “Generatsiya struktur v opticheskikh sistemakh s dvumernoi obratnoi svyazyu: na puti k sozdaniyu nelineino opticheskikh analogov neironnykh setei”, Novye printsipy opticheskoi obrabotki informatsii, Nauka, M., 1990, 263–325

[33] Razgulin A. V., “Ob avtokolebaniyakh v nelineinoi parabolicheskoi zadache s preobrazovannym argumentom”, ZhVM i MF, 33:1 (1993), 69–80 | MR | Zbl

[34] Skubachevskii A. L., “O bifurkatsii Khopfa dlya kvazilineinogo parabolicheskogo funktsionalno-differentsialnogo uravneniya”, Dif. uravneniya, 34:10 (1998), 1394–1401 | MR | Zbl

[35] Belan E. P., “Vraschayuschiesya volny v parabolicheskoi zadache s preobrazovannym argumentom”, Dinamicheskie sistemy, no. 16, KFT, Simferopol, 2000, 160–167

[36] Belan E. P., “O bifurkatsii beguschikh voln v singulyarno vozmuschennoi parabolicheskoi zadache s preobrazovannym argumentom”, Dinamicheskie sistemy, no. 17, KFT, Simferopol, 2001, 179–184

[37] Kolesov Yu. S., “Bifurkatsiya invariantnykh torov parabolicheskikh sistem s maloi diffuziei”, Mat. sb., 184:3 (1993), 121–136 | MR | Zbl

[38] Zeldovich Ya. B., Malomed B. A., “Slozhnye volnovye rezhimy v raspredelennykh dinamicheskikh sistemakh”, Izv. vuzov. Radiofizika, 25:6 (1982), 591–618 | MR

[39] Aldushin A. P., Malomed B. A., “Fenomenologicheskoe opisanie nestatsionarnykh neodnorodnykh voln goreniya”, Fizika goreniya i vzryva, 1981, no. 1, 3–12

[40] Kolesov A. Yu., “Kriterii ustoichivosti beguschikh voln parabolicheskikh sistem s maloi diffuziei”, Sib. mat. zhurn., 30:3 (1989), 175–179 | MR

[41] Vasileva A. B., Kaschenko S. A., Kolesov Yu. S., Rozov N. Kh., “Bifurkatsiya avtokolebanii nelineinykh parabolicheskikh uravnenii s maloi diffuziei”, Mat. sb., 130:4 (1986), 488–499 | MR

[42] Mischenko E. F., Kolesov Yu. S., Kolesov A. Yu., Rozov N. Kh., Periodicheskie dvizheniya i bifurkatsionnye protsessy v singulyarno vozmuschennykh sistemakh, Fizmatlit, M., 1995, 328 pp. | MR

[43] Landau L. D., “K probleme turbulentnosti”, DAN SSSR, 44:8 (1943), 339–342

[44] Andronov A. A. (ml.), Fabrikant A. L., “Zatukhanie Landau, vetrovye volny i svistok”, Nelineinye volny, Nauka, M., 1979, 68–104

[45] Nikolis G., Prigozhin I., Samoorganizatsiya v neravnovesnykh sistemakh, Mir, M., 1979, 512 pp.

[46] Hagan P. S., “Spiral waves in reaction-diffusion equations”, SIAM J. Appl. Math., 42:4 (1982), 762–786 | DOI | MR | Zbl

[47] Belintsev B. N., “Dissipativnye struktury i problemy biologicheskogo formoobrazovaniya”, UFN, 141:1 (1983), 55–101 | MR

[48] Akhromeeva T. S., Kurdyumov S. P., Malinetskii G. G., Samarskii A. A., “O klassifikatsii reshenii sistemy nelineinykh diffuzionnykh uravnenii v okrestnosti tochki bifurkatsii”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 28, VINITI, M., 1986, 207–313 | MR

[49] Kolesov A. Yu., Kulikov A. N., Invariantnye tory nelineinykh evolyutsionnykh uravnenii, Ucheb. posobie, Yaroslav. un-t, Yaroslavl, 2003, 108 pp.

[50] Sobolevskii P. E., “Ob uravneniyakh parabolicheskogo tipa v banakhovykh prostranstvakh”, Tr. Mosk. mat. o-va, 10, 1961, 297–350 | MR | Zbl

[51] Anischenko V. S., Slozhnye kolebaniya v prostykh sistemakh, Nauka, M., 1990, 312 pp. | MR | Zbl

[52] Zakharov A. A., Kolesov Yu. S., “Prostranstvenno neodnorodnye rezhimy v zadache khischnik–zhertva”, Nelineinye kolebaniya i ekologiya, Yaroslav. un-t, Yaroslavl, 1984, 3–15 | MR

[53] Kolesov A. Yu., “Suschestvovanie asimptoticheski bolshogo chisla ustoichivykh beguschikh voln v odnoi trekhmernoi sisteme parabolicheskikh uravnenii”, Metody kachestvennoi teorii differentsialnykh uravnenii, Mezhvuz. sb., Gork. un-t, Gorkii, 1986, 57–66 | MR | Zbl

[54] Kolesov A. Yu., “Avtokolebaniya singulyarno vozmuschennykh parabolicheskikh sistem pervoi stepeni negrubosti”, Mat. zametki, 49:5 (1991), 62–69 | MR | Zbl

[55] Kolesov A. Yu., “Bifurkatsiya periodicheskikh reshenii singulyarno vozmuschennykh parabolicheskikh sistem pervoi stepeni negrubosti”, Ukr. mat. zhurn., 42:8 (1990), 1037–1042 | MR

[56] Kolesov A. Yu., “Teoreticheskoe ob'yasnenie yavleniya diffuzionnoi bufernosti”, Modelirovanie dinamiki populyatsii, Nizhegor. un-t, N. Novgorod, 1990, 35–38 | MR

[57] Kolesov A. Yu., Rozov N. Kh., “Diffuzionnaya bufernost v odnoi matematicheskoi modeli biologii”, Izv. RAN. Ser. mat., 62:5 (1998), 135–164 | MR | Zbl

[58] Kolesov A. Yu., Rozov N. Kh., “Osobennosti dinamiki uravneniya Ginzburga–Landau v ploskoi oblasti”, TMF, 125:2 (2000), 205–220 | MR | Zbl

[59] Pu T., Nelineinaya ekonomicheskaya dinamika, Nauch.-izd. tsentr “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2000, 200 pp.

[60] Kolesov A. Yu., Rozov N. Kh., “Mnogochastotnyi parametricheskii rezonans v nelineinom volnovom uravnenii”, Izv. RAN. Ser. mat., 66:6 (2002), 49–64 | MR | Zbl