Buffer Phenomenon in Nonlinear Physics
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 250 (2005), pp. 112-182
Voir la notice de l'article provenant de la source Math-Net.Ru
The buffer phenomenon is a property of a mathematical model of a nonlinear distributed system to have any predetermined finite number of attractors of the same type (stable equilibrium states, cycles, tori, etc.) for an appropriate choice of its parameters. A rigorous mathematical investigation of the buffer phenomenon has become possible due to the application and development of the apparatus of asymptotic analysis. The buffer property is typical for a wide class of mathematical models that describe many nonlinear processes in physics (radio physics, mechanics, optics, and combustion theory) and are represented by boundary value problems for systems of partial differential equations. The relationship between the buffer phenomenon and the onset of turbulence and dynamical chaos is traced.
@article{TM_2005_250_a6,
author = {A. Yu. Kolesov and E. F. Mishchenko and N. Kh. Rozov},
title = {Buffer {Phenomenon} in {Nonlinear} {Physics}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {112--182},
publisher = {mathdoc},
volume = {250},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2005_250_a6/}
}
TY - JOUR AU - A. Yu. Kolesov AU - E. F. Mishchenko AU - N. Kh. Rozov TI - Buffer Phenomenon in Nonlinear Physics JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2005 SP - 112 EP - 182 VL - 250 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2005_250_a6/ LA - ru ID - TM_2005_250_a6 ER -
A. Yu. Kolesov; E. F. Mishchenko; N. Kh. Rozov. Buffer Phenomenon in Nonlinear Physics. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 250 (2005), pp. 112-182. http://geodesic.mathdoc.fr/item/TM_2005_250_a6/