Homogenized Tensor on Networks
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 250 (2005), pp. 105-111.

Voir la notice de l'article provenant de la source Math-Net.Ru

The homogenized tensor that arises in problems of elasticity theory on periodic networks is studied. On the basis of the relaxation formula, optimal networks are described for which the homogenized tensor can be determined in an explicit form, exact calculations for some nonoptimal networks are performed, and the nondegeneracy properties of the homogenized tensor are investigated. Scalar problems are handled similarly; the class of optimal networks for them proves to be larger than that for problems of elasticity theory.
@article{TM_2005_250_a5,
     author = {V. V. Zhikov and S. E. Pastukhova},
     title = {Homogenized {Tensor} on {Networks}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {105--111},
     publisher = {mathdoc},
     volume = {250},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2005_250_a5/}
}
TY  - JOUR
AU  - V. V. Zhikov
AU  - S. E. Pastukhova
TI  - Homogenized Tensor on Networks
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2005
SP  - 105
EP  - 111
VL  - 250
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2005_250_a5/
LA  - ru
ID  - TM_2005_250_a5
ER  - 
%0 Journal Article
%A V. V. Zhikov
%A S. E. Pastukhova
%T Homogenized Tensor on Networks
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2005
%P 105-111
%V 250
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2005_250_a5/
%G ru
%F TM_2005_250_a5
V. V. Zhikov; S. E. Pastukhova. Homogenized Tensor on Networks. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 250 (2005), pp. 105-111. http://geodesic.mathdoc.fr/item/TM_2005_250_a5/

[1] Bakhvalov N. S., Panasenko G. P., Homogenization: Averaging processes in periodic media, Kluwer, Dordrecht, Boston, London, 1989 | MR | MR | Zbl | Zbl

[2] Zhikov V. V., “Usrednenie zadach teorii uprugosti na singulyarnykh strukturakh”, Izv. RAN. Ser. mat., 66:2 (2002), 81–148 | MR | Zbl

[3] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Nauka, M., 1993 | MR | Zbl

[4] Pastukhova S. E., “Ob approksimativnykh svoistvakh sobolevskikh prostranstv teorii uprugosti na tonkikh sterzhnevykh strukturakh”, Sovremennaya matematika i ee prilozheniya, 12 (2003), 89–106

[5] Pastukhova S. E., “Approksimativnye usloviya i predelnyi perekhod v sobolevskikh prostranstvakh na tonkikh i sostavnykh strukturakh”, Sovremennaya matematika i ee prilozheniya, 16 (2004), 47–63 | MR

[6] Zhikov V. V., “Ob odnom rasshirenii i primenenii metoda dvukhmasshtabnoi skhodimosti”, Mat. sb., 191:7 (2000), 31–72 | MR | Zbl

[7] Mazya V. G., Slutskii A. S., “Osrednenie differentsialnykh uravnenii na melkoi setke”, DAN SSSR, 293:4 (1987), 792–796 | MR