Spectral Method in Homogenization Theory
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 250 (2005), pp. 95-104

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of homogenization (in the whole space) is considered. The so-called spectral method is applied in order to estimate the difference between the exact solution and special approximations.
@article{TM_2005_250_a4,
     author = {V. V. Zhikov},
     title = {Spectral {Method} in {Homogenization} {Theory}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {95--104},
     publisher = {mathdoc},
     volume = {250},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2005_250_a4/}
}
TY  - JOUR
AU  - V. V. Zhikov
TI  - Spectral Method in Homogenization Theory
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2005
SP  - 95
EP  - 104
VL  - 250
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2005_250_a4/
LA  - ru
ID  - TM_2005_250_a4
ER  - 
%0 Journal Article
%A V. V. Zhikov
%T Spectral Method in Homogenization Theory
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2005
%P 95-104
%V 250
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2005_250_a4/
%G ru
%F TM_2005_250_a4
V. V. Zhikov. Spectral Method in Homogenization Theory. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 250 (2005), pp. 95-104. http://geodesic.mathdoc.fr/item/TM_2005_250_a4/