Spectral Method in Homogenization Theory
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 250 (2005), pp. 95-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of homogenization (in the whole space) is considered. The so-called spectral method is applied in order to estimate the difference between the exact solution and special approximations.
@article{TM_2005_250_a4,
     author = {V. V. Zhikov},
     title = {Spectral {Method} in {Homogenization} {Theory}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {95--104},
     publisher = {mathdoc},
     volume = {250},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2005_250_a4/}
}
TY  - JOUR
AU  - V. V. Zhikov
TI  - Spectral Method in Homogenization Theory
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2005
SP  - 95
EP  - 104
VL  - 250
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2005_250_a4/
LA  - ru
ID  - TM_2005_250_a4
ER  - 
%0 Journal Article
%A V. V. Zhikov
%T Spectral Method in Homogenization Theory
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2005
%P 95-104
%V 250
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2005_250_a4/
%G ru
%F TM_2005_250_a4
V. V. Zhikov. Spectral Method in Homogenization Theory. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 250 (2005), pp. 95-104. http://geodesic.mathdoc.fr/item/TM_2005_250_a4/

[1] Gelfand I. M., “Razlozhenie po sobstvennym funktsiyam uravneniya s periodicheskimi koeffitsientami”, DAN SSSR, 73:6 (1950), 1117–1120 | MR

[2] Birman M. Sh., Suslina T. A., “Periodicheskie differentsialnye operatory vtorogo poryadka. Porogovye svoistva i usredneniya”, Algebra i analiz, 15:5 (2003), 1–108 | MR | Zbl

[3] Sevostyanova E. V., “Asimptoticheskoe razlozhenie resheniya ellipticheskogo uravneniya vtorogo poryadka s periodicheskimi bystro ostsilliruyuschimi koeffitsientami”, Mat. sb., 115:2 (1981), 204–222 | MR

[4] Zhikov V. V., “Spektralnyi podkhod k asimptoticheskim zadacham diffuzii”, Dif. uravneniya, 25:1 (1989), 44–50 | MR | Zbl

[5] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Nauka, M., 1993 | MR | Zbl

[6] Aleksandrova I. A., “Spektralnyi metod v asimptoticheskikh zadachakh diffuzii so snosom”, Mat. zametki, 59:5 (1996), 768–770 | MR | Zbl

[7] Belyaev A. Yu., “Volny szhatiya v zhidkosti s puzyrkami gaza”, PMM, 52:3 (1988), 444–449 | Zbl

[8] Zhikov V. V., “Ob operatornykh otsenkakh v teorii usredneniya”, DAN, 403:3 (2005), 305–308 | MR | Zbl

[9] Zhikov V. V., “Svyaznost i usrednenie. Primery fraktalnoi provodimosti”, Mat. sb., 187:8 (1996), 3–40 | MR | Zbl

[10] Zhikov V. V., “Ob odnom rasshirenii i primenenii metoda dvukhmasshtabnoi skhodimosti”, Mat. sb., 191:7 (2000), 31–72 | MR | Zbl