$\Gamma$-convergence for Strongly Local Dirichlet Forms in Open Sets with Holes
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 250 (2005), pp. 262-271

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider homogenization problems with holes for strongly local Dirichlet forms in the cases of the Dirichlet and Neumann homogeneous conditions on the boundaries of the holes. In the second case, the main difficulties arise from the absence of a group structure on the underlying space and from the nonperiodic distribution of the holes. Complete proofs of the results will appear later.
@article{TM_2005_250_a12,
     author = {M. Biroli},
     title = {$\Gamma$-convergence for {Strongly} {Local} {Dirichlet} {Forms} in {Open} {Sets} with {Holes}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {262--271},
     publisher = {mathdoc},
     volume = {250},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2005_250_a12/}
}
TY  - JOUR
AU  - M. Biroli
TI  - $\Gamma$-convergence for Strongly Local Dirichlet Forms in Open Sets with Holes
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2005
SP  - 262
EP  - 271
VL  - 250
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2005_250_a12/
LA  - en
ID  - TM_2005_250_a12
ER  - 
%0 Journal Article
%A M. Biroli
%T $\Gamma$-convergence for Strongly Local Dirichlet Forms in Open Sets with Holes
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2005
%P 262-271
%V 250
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2005_250_a12/
%G en
%F TM_2005_250_a12
M. Biroli. $\Gamma$-convergence for Strongly Local Dirichlet Forms in Open Sets with Holes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 250 (2005), pp. 262-271. http://geodesic.mathdoc.fr/item/TM_2005_250_a12/