$\Gamma$-convergence for Strongly Local Dirichlet Forms in Open Sets with Holes
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 250 (2005), pp. 262-271
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider homogenization problems with holes for strongly local Dirichlet forms in the cases of the Dirichlet and Neumann homogeneous conditions on the boundaries of the holes. In the second case, the main difficulties arise from the absence of a group structure on the underlying space and from the nonperiodic distribution of the holes. Complete proofs of the results will appear later.
@article{TM_2005_250_a12,
author = {M. Biroli},
title = {$\Gamma$-convergence for {Strongly} {Local} {Dirichlet} {Forms} in {Open} {Sets} with {Holes}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {262--271},
publisher = {mathdoc},
volume = {250},
year = {2005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TM_2005_250_a12/}
}
TY - JOUR AU - M. Biroli TI - $\Gamma$-convergence for Strongly Local Dirichlet Forms in Open Sets with Holes JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2005 SP - 262 EP - 271 VL - 250 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2005_250_a12/ LA - en ID - TM_2005_250_a12 ER -
M. Biroli. $\Gamma$-convergence for Strongly Local Dirichlet Forms in Open Sets with Holes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 250 (2005), pp. 262-271. http://geodesic.mathdoc.fr/item/TM_2005_250_a12/