Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2005_250_a12, author = {M. Biroli}, title = {$\Gamma$-convergence for {Strongly} {Local} {Dirichlet} {Forms} in {Open} {Sets} with {Holes}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {262--271}, publisher = {mathdoc}, volume = {250}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TM_2005_250_a12/} }
TY - JOUR AU - M. Biroli TI - $\Gamma$-convergence for Strongly Local Dirichlet Forms in Open Sets with Holes JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2005 SP - 262 EP - 271 VL - 250 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2005_250_a12/ LA - en ID - TM_2005_250_a12 ER -
M. Biroli. $\Gamma$-convergence for Strongly Local Dirichlet Forms in Open Sets with Holes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 250 (2005), pp. 262-271. http://geodesic.mathdoc.fr/item/TM_2005_250_a12/
[1] Allaire G., Murat F., “Homogenization of the Neumann problem with nonisolated holes”, Asymptotic Anal., 7:2 (1993), 81–95 | MR | Zbl
[2] Biroli M., “The Wiener test for Poincaré–Dirichlet forms”, Classical and modern potential theory and applications, Kluwer, Dordrecht, 1994, 93–104 | MR | Zbl
[3] Biroli M., Mosco U., “Formes de Dirichlet et estimations structurelles dans les milieux discontinus”, C. R. Acad. sci. Paris. Sér. 1, 313:9 (1991), 593–598 | MR | Zbl
[4] Biroli M., Mosco U., “A Saint-Venant principle for Dirichlet forms on discontinuous media”, Ann. Mat. Pura ed Appl. Ser. 4, 169 (1995), 125–181 | DOI | MR | Zbl
[5] Biroli M., Tchou N. A., “Asymptotic behavior of relaxed Dirichlet problems involving a Dirichlet–Poincaré inequality”, Ztschr. Anal. und Anwend., 16 (1997), 281–309 | MR | Zbl
[6] Biroli M., Tchou N. A., “Relaxation for Dirichlet problems involving a Dirichlet form”, Ztschr. Anal. und Anwend., 19 (1997), 203–225 | MR
[7] Biroli M., Tchou N. A., Zhikov V. V., “Homogenization for Heisenberg operator with Neumann boundary conditions”, Ric. Mat. Suppl., 48 (1999), 45–59 | MR | Zbl
[8] Biroli M., Tersian S., “On the existence of nontrivial solutions to a semilinear equation relative to a Dirichlet form”, Rend. Ist. Lombardo Accad. Sci. e Lett. A., 131 (1997), 151–168 | MR
[9] Briane M., “Poincaré–Wirtinger's inequality for the homogenization in perforated domains”, Boll. Un. Mat. Ital. Ser. 7B, 11 (1997), 53–82 | MR | Zbl
[10] Briane M., Damlamian A., Donato P., “H-convergence for perforated domains”, Nonlinear partial differential equations and their applications: Collège de France Seminar., V. 13, Pitman Res. Notes Math. Ser., 391, Longman, Harlow, 1998, 62–100 | MR | Zbl
[11] Cioranescu D., Murat F., “Un terme étrange venu d'ailleurs”, Collège de France Seminar., V. 2, Res. Notes Math., 60, Pitman, London, 1982, 98–138 | MR
[12] Cioranescu D., Murat F., “Un terme étrange venu d'ailleurs, II”, Nonlinear partial differential equations and their applications: Collège de France Seminar., V. 3, Res. Notes Math., 70, Pitman, London, 1983, 154–178 | MR
[13] Cioranescu D., Saint Jean Paulin J., “Homogenization in open sets with holes”, J. Math. Anal. and Appl., 71:2 (1979), 590–607 | DOI | MR | Zbl
[14] Dal Maso G., “$\Gamma$-convergence and $\mu$ capacities”, Ann. Scuola Norm. Super. Pisa. Cl. Sci. Ser. 4, 14 (1987), 423–464 | MR | Zbl
[15] Dal Maso G., Mosco U., “Wiener criteria and energy decay for relaxed Dirichlet problems”, Arch. Ration. Mech. and Anal., 95 (1986), 345–387 | DOI | MR | Zbl
[16] Dal Maso G., Mosco U., “Wiener's criterion and $\Gamma$-convergence”, Appl. Math. and Optim., 15:1 (1987), 15–63 | DOI | MR | Zbl
[17] Damlamian A., Donato P., “Periodic homogenization in perforated domains with Neumann conditions”, Homogenization (Naples, 2001), Gakuto Intern. Ser. Math. Sci., 18, Gakkotosho, Tokyo, 2003, 169–182 | MR | Zbl
[18] Fukushima M., Dirichlet forms and Markov processes, North-Holland Math. Library, 23, North-Holland, Amsterdam, 1980 | MR | Zbl
[19] Khruslov E. Ya., “Metod ortogonalnykh proektsii i zadacha Dirikhle v oblastyakh s melkozernistoi granitsei”, Mat. sb., 88 (1972), 38–60 | Zbl
[20] Khruslov E. Ya., “Asimptoticheskoi povedenie reshenii vtoroi kraevoi zadachi pri izmelchenii granitsy oblasti”, Mat. sb., 106:4 (1978), 604–621 | MR | Zbl
[21] Lu G., “On Harnack's inequality for a class of strongly degenerate Schrödinger operators formed by vector fields”, Diff. and Integr. Equat., 7:1 (1994), 73–100 | MR
[22] Marchenko V. A., Khruslov E. Ya., Kraevye zadachi v oblastyakh s melkozernistoi granitsei, Nauk. dumka, Kiev, 1974 | MR
[23] Mosco U., Compact families of Dirichlet forms, Cours 3me cycle, Univ. Paris VI, 1992
[24] Mosco U., “Composite media and asymptotic Dirichlet forms”, J. Funct. Anal., 123 (1994), 368–421 | DOI | MR | Zbl
[25] Mosco U., “Dirichlet forms and self-similarity”, New directions in Dirichlet forms, AMS/IP Stud. Adv. Math., 8, Intern. Press, Cambridge, MA, 1998, 117–155 | MR
[26] Zhikov V. V., “Ob usrednenii v perforirovannykh sluchainykh oblastyakh obschego vida”, Mat. zametki, 53:1 (1993), 41–58 | MR | Zbl
[27] Zhikov V. V., “On the homogenization of nonlinear variational problems in perforated domains”, Russ. J. Math. Phys., 2:3 (1994), 393–408 | MR | Zbl
[28] Zhikov V. V., “Svyaznost i usrednenie. Primery fraktalnoi provodimosti”, Mat. sb., 187:8 (1996), 3–40 | MR | Zbl