Classification of Morse--Smale Diffeomorphisms with a~Finite Set of Heteroclinic Orbits on 3-Manifolds
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 250 (2005), pp. 5-53

Voir la notice de l'article provenant de la source Math-Net.Ru

A topological classification is obtained for a certain class of Morse–Smale diffeomorphisms defined on a closed smooth orientable three-dimensional manifold $M$. The class $G$ of these diffeomorphisms is determined by the following conditions: the wandering set of each diffeomorphism $f\in G$ contains a finite number of heteroclinic orbits and does not contain heteroclinic curves. For a diffeomorphism $f\in G$, a complete topological invariant (a scheme $S(f)$) is introduced. In particular, this scheme describes the topological structure of the embedding of two-dimensional separatrices of saddle periodic points into an ambient manifold. Moreover, the realization problem is solved: for each abstract invariant (perfect scheme $S$), a representative $f_S$ of a class of topologically conjugate diffeomorphisms is constructed whose scheme is equivalent to the initial one.
@article{TM_2005_250_a0,
     author = {Ch. Bonatti and V. Z. Grines and O. V. Pochinka},
     title = {Classification of {Morse--Smale} {Diffeomorphisms} with {a~Finite} {Set} of {Heteroclinic} {Orbits} on {3-Manifolds}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {5--53},
     publisher = {mathdoc},
     volume = {250},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2005_250_a0/}
}
TY  - JOUR
AU  - Ch. Bonatti
AU  - V. Z. Grines
AU  - O. V. Pochinka
TI  - Classification of Morse--Smale Diffeomorphisms with a~Finite Set of Heteroclinic Orbits on 3-Manifolds
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2005
SP  - 5
EP  - 53
VL  - 250
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2005_250_a0/
LA  - ru
ID  - TM_2005_250_a0
ER  - 
%0 Journal Article
%A Ch. Bonatti
%A V. Z. Grines
%A O. V. Pochinka
%T Classification of Morse--Smale Diffeomorphisms with a~Finite Set of Heteroclinic Orbits on 3-Manifolds
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2005
%P 5-53
%V 250
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2005_250_a0/
%G ru
%F TM_2005_250_a0
Ch. Bonatti; V. Z. Grines; O. V. Pochinka. Classification of Morse--Smale Diffeomorphisms with a~Finite Set of Heteroclinic Orbits on 3-Manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 250 (2005), pp. 5-53. http://geodesic.mathdoc.fr/item/TM_2005_250_a0/