Description of the Rearrangement Invariant Envelope of an Anisotropic Calderon Space
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Studies on function theory and differential equations, Tome 248 (2005), pp. 94-105 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An exact description is found for the minimal rearrangement invariant space that contains an anisotropic Calderon space. An application to anisotropic Besov spaces of generalized smoothness is obtained.
@article{TM_2005_248_a9,
     author = {M. L. Gol'dman and F. \'Enriquez},
     title = {Description of the {Rearrangement} {Invariant} {Envelope} of an {Anisotropic} {Calderon} {Space}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {94--105},
     year = {2005},
     volume = {248},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2005_248_a9/}
}
TY  - JOUR
AU  - M. L. Gol'dman
AU  - F. Énriquez
TI  - Description of the Rearrangement Invariant Envelope of an Anisotropic Calderon Space
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2005
SP  - 94
EP  - 105
VL  - 248
UR  - http://geodesic.mathdoc.fr/item/TM_2005_248_a9/
LA  - ru
ID  - TM_2005_248_a9
ER  - 
%0 Journal Article
%A M. L. Gol'dman
%A F. Énriquez
%T Description of the Rearrangement Invariant Envelope of an Anisotropic Calderon Space
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2005
%P 94-105
%V 248
%U http://geodesic.mathdoc.fr/item/TM_2005_248_a9/
%G ru
%F TM_2005_248_a9
M. L. Gol'dman; F. Énriquez. Description of the Rearrangement Invariant Envelope of an Anisotropic Calderon Space. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Studies on function theory and differential equations, Tome 248 (2005), pp. 94-105. http://geodesic.mathdoc.fr/item/TM_2005_248_a9/

[1] Nikolskii S.M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977, 456 pp.

[2] Calderon A.P., “Intermediate spaces and interpolation, the complex method”, Stud. Math., 24:2 (1964), 113–190 | MR | Zbl

[3] Golovkin K.K., Parametricheski normirovannye prostranstva i normirovannye massivy, Tr. MIAN, 106, Nauka, M., 1969, 135 pp.

[4] Brudnyi Yu.A., Shalashov V.K., “Lipshitsevy prostranstva funktsii”, Metricheskie voprosy teorii funktsii i otobrazhenii, Nauk. dumka, Kiev, 1973, 3–60

[5] Goldman M.L., “O vlozhenii konstruktivnykh i strukturnykh lipshitsevykh prostranstv v simmetrichnye”, Tr. MIAN, 173 (1986), 90–112 | MR

[6] Goldman M.L., “O vlozhenii raznykh metrik dlya prostranstv tipa Kalderona”, Tr. MIAN, 181 (1988), 70–94 | MR | Zbl

[7] Goldman M.L., Kerman R.A., “Ob optimalnom vlozhenii prostranstv Kalderona i obobschennykh prostranstv Besova”, Tr. MIAN, 243 (2003), 161–193 | MR | Zbl

[8] Goldman M.L., Enrikes F.E., Optimalnyi konus dlya perestanovok funktsii iz anizotropnogo prostranstva Kalderona, Dep. v VINITI, No2221-V, VINITI, M., 2003

[9] Netrusov Yu.V., “Teoremy vlozheniya prostranstv Besova v idealnye prostranstva”, Zap. nauch. sem. LOMI, 159 (1987), 69–82 | Zbl

[10] Netrusov Yu.V., “Teoremy vlozheniya prostranstv Lizorkina–Tribelya”, Zap. nauch. sem. LOMI, 159 (1987), 103–112 | MR | Zbl

[11] Krein S.G., Petunin Yu.I., Semenov E.M., Interpolyatsiya lineinykh operatorov, Nauka, M., 1978, 400 pp.

[12] Bennett C., Sharpley R., Interpolation of operators, Pure and Appl. Math., 129, Acad. Press, New York, 1988 | MR | Zbl

[13] Berkolaiko M.Z., Ovchinnikov V.I., “Neravenstva dlya tselykh funktsii eksponentsialnogo tipa v simmetrichnykh prostranstvakh”, Tr. MIAN, 161 (1983), 3–17 | MR | Zbl