Description of the Rearrangement Invariant Envelope of an Anisotropic Calderon Space
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Studies on function theory and differential equations, Tome 248 (2005), pp. 94-105.

Voir la notice de l'article provenant de la source Math-Net.Ru

An exact description is found for the minimal rearrangement invariant space that contains an anisotropic Calderon space. An application to anisotropic Besov spaces of generalized smoothness is obtained.
@article{TM_2005_248_a9,
     author = {M. L. Gol'dman and F. \'Enriquez},
     title = {Description of the {Rearrangement} {Invariant} {Envelope} of an {Anisotropic} {Calderon} {Space}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {94--105},
     publisher = {mathdoc},
     volume = {248},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2005_248_a9/}
}
TY  - JOUR
AU  - M. L. Gol'dman
AU  - F. Énriquez
TI  - Description of the Rearrangement Invariant Envelope of an Anisotropic Calderon Space
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2005
SP  - 94
EP  - 105
VL  - 248
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2005_248_a9/
LA  - ru
ID  - TM_2005_248_a9
ER  - 
%0 Journal Article
%A M. L. Gol'dman
%A F. Énriquez
%T Description of the Rearrangement Invariant Envelope of an Anisotropic Calderon Space
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2005
%P 94-105
%V 248
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2005_248_a9/
%G ru
%F TM_2005_248_a9
M. L. Gol'dman; F. Énriquez. Description of the Rearrangement Invariant Envelope of an Anisotropic Calderon Space. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Studies on function theory and differential equations, Tome 248 (2005), pp. 94-105. http://geodesic.mathdoc.fr/item/TM_2005_248_a9/

[1] Nikolskii S.M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977, 456 pp.

[2] Calderon A.P., “Intermediate spaces and interpolation, the complex method”, Stud. Math., 24:2 (1964), 113–190 | MR | Zbl

[3] Golovkin K.K., Parametricheski normirovannye prostranstva i normirovannye massivy, Tr. MIAN, 106, Nauka, M., 1969, 135 pp.

[4] Brudnyi Yu.A., Shalashov V.K., “Lipshitsevy prostranstva funktsii”, Metricheskie voprosy teorii funktsii i otobrazhenii, Nauk. dumka, Kiev, 1973, 3–60

[5] Goldman M.L., “O vlozhenii konstruktivnykh i strukturnykh lipshitsevykh prostranstv v simmetrichnye”, Tr. MIAN, 173 (1986), 90–112 | MR

[6] Goldman M.L., “O vlozhenii raznykh metrik dlya prostranstv tipa Kalderona”, Tr. MIAN, 181 (1988), 70–94 | MR | Zbl

[7] Goldman M.L., Kerman R.A., “Ob optimalnom vlozhenii prostranstv Kalderona i obobschennykh prostranstv Besova”, Tr. MIAN, 243 (2003), 161–193 | MR | Zbl

[8] Goldman M.L., Enrikes F.E., Optimalnyi konus dlya perestanovok funktsii iz anizotropnogo prostranstva Kalderona, Dep. v VINITI, No2221-V, VINITI, M., 2003

[9] Netrusov Yu.V., “Teoremy vlozheniya prostranstv Besova v idealnye prostranstva”, Zap. nauch. sem. LOMI, 159 (1987), 69–82 | Zbl

[10] Netrusov Yu.V., “Teoremy vlozheniya prostranstv Lizorkina–Tribelya”, Zap. nauch. sem. LOMI, 159 (1987), 103–112 | MR | Zbl

[11] Krein S.G., Petunin Yu.I., Semenov E.M., Interpolyatsiya lineinykh operatorov, Nauka, M., 1978, 400 pp.

[12] Bennett C., Sharpley R., Interpolation of operators, Pure and Appl. Math., 129, Acad. Press, New York, 1988 | MR | Zbl

[13] Berkolaiko M.Z., Ovchinnikov V.I., “Neravenstva dlya tselykh funktsii eksponentsialnogo tipa v simmetrichnykh prostranstvakh”, Tr. MIAN, 161 (1983), 3–17 | MR | Zbl