Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2005_248_a8, author = {E. A. Volkov}, title = {A~Block {Method} for {Solving} the {Laplace} {Equation} in {a~Disk} with {a~Hole} {That} {Has} {Cuts}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {86--93}, publisher = {mathdoc}, volume = {248}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2005_248_a8/} }
TY - JOUR AU - E. A. Volkov TI - A~Block Method for Solving the Laplace Equation in a~Disk with a~Hole That Has Cuts JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2005 SP - 86 EP - 93 VL - 248 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2005_248_a8/ LA - ru ID - TM_2005_248_a8 ER -
E. A. Volkov. A~Block Method for Solving the Laplace Equation in a~Disk with a~Hole That Has Cuts. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Studies on function theory and differential equations, Tome 248 (2005), pp. 86-93. http://geodesic.mathdoc.fr/item/TM_2005_248_a8/
[1] Lavrentev M.A., Shabat B.V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1987
[2] Akhiezer N.I., Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970
[3] Volkov E.A., “Razvitie blochnogo metoda resheniya uravneniya Laplasa dlya konechnykh i beskonechnykh krugovykh mnogougolnikov”, Tr. MIAN, 187 (1989), 39–68 | MR
[4] Volkov E.A., Block method for solving the Laplace equation and for constructing conformal mappings, CRC Press, Boca Raton (Florida), 1994 | MR | Zbl