Interpolation, Embedding, and Extension of Spaces of Functions of Variable Smoothness
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Studies on function theory and differential equations, Tome 248 (2005), pp. 52-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

Interpolation, embedding, and extension theorems are proved for Banach spaces $B_{p,q}^s(G)$ and $L_{p,q}^s(G)=F_{p,q}^s(G)$, $1 p,q\infty$, of functions that have a variable smoothness $s=s(x)$ and are defined on a domain $G\subset \mathbb R ^n$ with a Lipschitz boundary.
@article{TM_2005_248_a5,
     author = {O. V. Besov},
     title = {Interpolation, {Embedding,} and {Extension} of {Spaces} of {Functions} of {Variable} {Smoothness}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {52--63},
     publisher = {mathdoc},
     volume = {248},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2005_248_a5/}
}
TY  - JOUR
AU  - O. V. Besov
TI  - Interpolation, Embedding, and Extension of Spaces of Functions of Variable Smoothness
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2005
SP  - 52
EP  - 63
VL  - 248
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2005_248_a5/
LA  - ru
ID  - TM_2005_248_a5
ER  - 
%0 Journal Article
%A O. V. Besov
%T Interpolation, Embedding, and Extension of Spaces of Functions of Variable Smoothness
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2005
%P 52-63
%V 248
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2005_248_a5/
%G ru
%F TM_2005_248_a5
O. V. Besov. Interpolation, Embedding, and Extension of Spaces of Functions of Variable Smoothness. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Studies on function theory and differential equations, Tome 248 (2005), pp. 52-63. http://geodesic.mathdoc.fr/item/TM_2005_248_a5/

[1] Besov O.V., Ilin V.P., Nikolskii S.M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1996

[2] Triebel H., Theory of function spaces, Birkhäuser, Basel, 1983 ; Трибель Х., Теория функциональных пространств, Мир, М., 1986 | MR | Zbl | MR | Zbl

[3] Kalyabin G.A., Lizorkin P.I., “Spaces of functions of generalized smoothness”, Math. Nachr., 133 (1987), 7–32 | DOI | MR | Zbl

[4] Merucci C., “Applications of interpolation with a function parameter to Lorentz, Sobolev and Besov spaces”, Lect. Notes Math., 1070 (1984), 183–201 | DOI | MR | Zbl

[5] Cobos P., Fernandez D.L., “Hardy–Sobolev spaces and Besov spaces with a function parameter”, Lect. Notes Math., 1302 (1988), 158–170 | DOI | MR | Zbl

[6] Besov O.V., “Vlozheniya prostranstv differentsiruemykh funktsii peremennoi gladkosti”, Tr. MIAN, 214 (1997), 25–58 | Zbl

[7] Besov O.V., “Ekvivalentnye normirovki prostranstv funktsii peremennoi gladkosti”, Tr. MIAN, 243 (2003), 87–95 | Zbl

[8] Leopold H.-G., Pseudodifferentialoperatoren und Funktionenräume variabler Glattheit: Diss. B, Friedrich-Schiller-Univ., Jena, 1987 | MR

[9] Leopold H.-G., “On function spaces of variable order of differentiation”, Forum math., 3 (1991), 1–21 | DOI | MR | Zbl

[10] Besov O.V., “O prostranstvakh funktsii peremennoi gladkosti, opredelyaemykh psevdodifferentsialnymi operatorami”, Tr. MIAN, 227 (1999), 56–74 | Zbl

[11] Triebel H., Interpolation theory, function spaces, differential operators, VEB Dtsch. Verl. Wiss., Berlin, 1978 ; Трибель Х., Теория интерполяции, функциональные пространства, дифференциальные операторы, Мир, М., 1980 | MR | MR

[12] Bergh J., Löfström J., Interpolation spaces: An introduction, Springer, Heidelberg, 1976 ; Берг Й., Лёфстрём Й., Интерполяционные пространства: Введение, Мир, М., 1980 | MR | Zbl | MR

[13] Besov O.V., “Interpolyatsiya i vlozheniya prostranstv obobschennykh funktsii $B_{p,q}^s$, $F_{p,q}^s$ na oblasti”, Tr. MIAN, 219 (1997), 80–102 | Zbl