Interpolation, Embedding, and Extension of Spaces of Functions of Variable Smoothness
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Studies on function theory and differential equations, Tome 248 (2005), pp. 52-63

Voir la notice de l'article provenant de la source Math-Net.Ru

Interpolation, embedding, and extension theorems are proved for Banach spaces $B_{p,q}^s(G)$ and $L_{p,q}^s(G)=F_{p,q}^s(G)$, $1 p,q\infty$, of functions that have a variable smoothness $s=s(x)$ and are defined on a domain $G\subset \mathbb R ^n$ with a Lipschitz boundary.
@article{TM_2005_248_a5,
     author = {O. V. Besov},
     title = {Interpolation, {Embedding,} and {Extension} of {Spaces} of {Functions} of {Variable} {Smoothness}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {52--63},
     publisher = {mathdoc},
     volume = {248},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2005_248_a5/}
}
TY  - JOUR
AU  - O. V. Besov
TI  - Interpolation, Embedding, and Extension of Spaces of Functions of Variable Smoothness
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2005
SP  - 52
EP  - 63
VL  - 248
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2005_248_a5/
LA  - ru
ID  - TM_2005_248_a5
ER  - 
%0 Journal Article
%A O. V. Besov
%T Interpolation, Embedding, and Extension of Spaces of Functions of Variable Smoothness
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2005
%P 52-63
%V 248
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2005_248_a5/
%G ru
%F TM_2005_248_a5
O. V. Besov. Interpolation, Embedding, and Extension of Spaces of Functions of Variable Smoothness. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Studies on function theory and differential equations, Tome 248 (2005), pp. 52-63. http://geodesic.mathdoc.fr/item/TM_2005_248_a5/