Ergodic Type Theorems for Gaussian Systems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Studies on function theory and differential equations, Tome 248 (2005), pp. 40-45

Voir la notice de l'article provenant de la source Math-Net.Ru

It is assumed that the correlation matrix $(\rho _{ij})$ of a Gaussian system $(X_i,\,i=1,2,\dots)$ generates a bounded linear operator on $l^1$. Under this assumption, ergodic type theorems are discussed.
@article{TM_2005_248_a3,
     author = {M. Be\'ska and Z. Ciesielski},
     title = {Ergodic {Type} {Theorems} for {Gaussian} {Systems}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {40--45},
     publisher = {mathdoc},
     volume = {248},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2005_248_a3/}
}
TY  - JOUR
AU  - M. Beśka
AU  - Z. Ciesielski
TI  - Ergodic Type Theorems for Gaussian Systems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2005
SP  - 40
EP  - 45
VL  - 248
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2005_248_a3/
LA  - en
ID  - TM_2005_248_a3
ER  - 
%0 Journal Article
%A M. Beśka
%A Z. Ciesielski
%T Ergodic Type Theorems for Gaussian Systems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2005
%P 40-45
%V 248
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2005_248_a3/
%G en
%F TM_2005_248_a3
M. Beśka; Z. Ciesielski. Ergodic Type Theorems for Gaussian Systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Studies on function theory and differential equations, Tome 248 (2005), pp. 40-45. http://geodesic.mathdoc.fr/item/TM_2005_248_a3/