Ergodic Type Theorems for Gaussian Systems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Studies on function theory and differential equations, Tome 248 (2005), pp. 40-45
Cet article a éte moissonné depuis la source Math-Net.Ru
It is assumed that the correlation matrix $(\rho _{ij})$ of a Gaussian system $(X_i,\,i=1,2,\dots)$ generates a bounded linear operator on $l^1$. Under this assumption, ergodic type theorems are discussed.
@article{TM_2005_248_a3,
author = {M. Be\'ska and Z. Ciesielski},
title = {Ergodic {Type} {Theorems} for {Gaussian} {Systems}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {40--45},
year = {2005},
volume = {248},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TM_2005_248_a3/}
}
M. Beśka; Z. Ciesielski. Ergodic Type Theorems for Gaussian Systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Studies on function theory and differential equations, Tome 248 (2005), pp. 40-45. http://geodesic.mathdoc.fr/item/TM_2005_248_a3/
[1] Dym H., McKean H.P., Gaussian processes, function theory and the inverse spectral problem, Acad. Press, New York, 1976 | MR | Zbl
[2] Gebelein H., “Das statistische Problem der Korrelation als Variations und Eigenwertproblem und sein Zusammenhang mit der Ausgleichsrechnung”, Ztschr. angew. Math. und Mech., 21 (1941), 364–379 | DOI | MR | Zbl
[3] Nelson E., “The free Markoff field”, J. Funct. Anal., 12 (1973), 211–227 | DOI | MR | Zbl
[4] Stroock D.W., Probability theory, Cambridge Univ. Press, Cambridge, 2003 | Zbl