Qualitative Investigation of Functions in Generalized Liouville--Sobolev Function Spaces $L_p^l(E_n)$ at Infinity
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Studies on function theory and differential equations, Tome 248 (2005), pp. 285-293

Voir la notice de l'article provenant de la source Math-Net.Ru

The asymptotic properties, as $r=|x|$ tends to infinity, of functions from $L_p^l(E_n)$ with fractional indices $l=(l_1,\dots , l_n)$ are described with the use of spherical means. Conditions under which spherical means oscillate on $[1,\infty )$ and converge at infinity are obtained.
@article{TM_2005_248_a25,
     author = {S. V. Uspenskii and E. N. Vasil'eva},
     title = {Qualitative {Investigation} of {Functions} in {Generalized} {Liouville--Sobolev} {Function} {Spaces} $L_p^l(E_n)$ at {Infinity}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {285--293},
     publisher = {mathdoc},
     volume = {248},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2005_248_a25/}
}
TY  - JOUR
AU  - S. V. Uspenskii
AU  - E. N. Vasil'eva
TI  - Qualitative Investigation of Functions in Generalized Liouville--Sobolev Function Spaces $L_p^l(E_n)$ at Infinity
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2005
SP  - 285
EP  - 293
VL  - 248
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2005_248_a25/
LA  - ru
ID  - TM_2005_248_a25
ER  - 
%0 Journal Article
%A S. V. Uspenskii
%A E. N. Vasil'eva
%T Qualitative Investigation of Functions in Generalized Liouville--Sobolev Function Spaces $L_p^l(E_n)$ at Infinity
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2005
%P 285-293
%V 248
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2005_248_a25/
%G ru
%F TM_2005_248_a25
S. V. Uspenskii; E. N. Vasil'eva. Qualitative Investigation of Functions in Generalized Liouville--Sobolev Function Spaces $L_p^l(E_n)$ at Infinity. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Studies on function theory and differential equations, Tome 248 (2005), pp. 285-293. http://geodesic.mathdoc.fr/item/TM_2005_248_a25/