On Relative Widths of Classes of Differentiable Functions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Studies on function theory and differential equations, Tome 248 (2005), pp. 250-261

Voir la notice de l'article provenant de la source Math-Net.Ru

The Kolmogorov widths $d_{2n} (W^r_C, C)$ and relative widths $K_{2n}(W^r_C,MW^j_C,C)$ of the class $W^r_C$ with respect to $MW^j_C$, where $j r$, are considered. The minimal multiplier $M$ for which these widths are equal is estimated from above and below; the bounds obtained show that this minimal value is asymptotically equal to the Favard constant $\mathcal K_{r-j}$ as $n \to \infty $.
@article{TM_2005_248_a22,
     author = {Yu. N. Subbotin and S. A. Telyakovskii},
     title = {On {Relative} {Widths} of {Classes} of {Differentiable} {Functions}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {250--261},
     publisher = {mathdoc},
     volume = {248},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2005_248_a22/}
}
TY  - JOUR
AU  - Yu. N. Subbotin
AU  - S. A. Telyakovskii
TI  - On Relative Widths of Classes of Differentiable Functions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2005
SP  - 250
EP  - 261
VL  - 248
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2005_248_a22/
LA  - ru
ID  - TM_2005_248_a22
ER  - 
%0 Journal Article
%A Yu. N. Subbotin
%A S. A. Telyakovskii
%T On Relative Widths of Classes of Differentiable Functions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2005
%P 250-261
%V 248
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2005_248_a22/
%G ru
%F TM_2005_248_a22
Yu. N. Subbotin; S. A. Telyakovskii. On Relative Widths of Classes of Differentiable Functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Studies on function theory and differential equations, Tome 248 (2005), pp. 250-261. http://geodesic.mathdoc.fr/item/TM_2005_248_a22/