Compactness and Inequalities for Partial Derivatives
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Studies on function theory and differential equations, Tome 248 (2005), pp. 194-203

Voir la notice de l'article provenant de la source Math-Net.Ru

For various spaces of differentiable functions defined on a domain with a Lipschitz boundary, theorems on the compactness of bounded sets under convergence in a weakened sense are established.
@article{TM_2005_248_a18,
     author = {S. M. Nikol'skii},
     title = {Compactness and {Inequalities} for {Partial} {Derivatives}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {194--203},
     publisher = {mathdoc},
     volume = {248},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2005_248_a18/}
}
TY  - JOUR
AU  - S. M. Nikol'skii
TI  - Compactness and Inequalities for Partial Derivatives
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2005
SP  - 194
EP  - 203
VL  - 248
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2005_248_a18/
LA  - ru
ID  - TM_2005_248_a18
ER  - 
%0 Journal Article
%A S. M. Nikol'skii
%T Compactness and Inequalities for Partial Derivatives
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2005
%P 194-203
%V 248
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2005_248_a18/
%G ru
%F TM_2005_248_a18
S. M. Nikol'skii. Compactness and Inequalities for Partial Derivatives. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Studies on function theory and differential equations, Tome 248 (2005), pp. 194-203. http://geodesic.mathdoc.fr/item/TM_2005_248_a18/