Compactness and Inequalities for Partial Derivatives
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Studies on function theory and differential equations, Tome 248 (2005), pp. 194-203.

Voir la notice de l'article provenant de la source Math-Net.Ru

For various spaces of differentiable functions defined on a domain with a Lipschitz boundary, theorems on the compactness of bounded sets under convergence in a weakened sense are established.
@article{TM_2005_248_a18,
     author = {S. M. Nikol'skii},
     title = {Compactness and {Inequalities} for {Partial} {Derivatives}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {194--203},
     publisher = {mathdoc},
     volume = {248},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2005_248_a18/}
}
TY  - JOUR
AU  - S. M. Nikol'skii
TI  - Compactness and Inequalities for Partial Derivatives
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2005
SP  - 194
EP  - 203
VL  - 248
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2005_248_a18/
LA  - ru
ID  - TM_2005_248_a18
ER  - 
%0 Journal Article
%A S. M. Nikol'skii
%T Compactness and Inequalities for Partial Derivatives
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2005
%P 194-203
%V 248
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2005_248_a18/
%G ru
%F TM_2005_248_a18
S. M. Nikol'skii. Compactness and Inequalities for Partial Derivatives. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Studies on function theory and differential equations, Tome 248 (2005), pp. 194-203. http://geodesic.mathdoc.fr/item/TM_2005_248_a18/

[1] Nikolskii S.M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969 | MR

[2] Nikolskii S.M., Kurs matematicheskogo analiza, t. 2, Nauka, M., 1973 | MR

[3] Nikolskii S.M., “O prodolzhenii funktsii mnogikh peremennykh s sokhraneniem differentsialnykh svoistv”, Mat. sb., 40:2 (1956), 243–268 | MR | Zbl

[4] Calderon A.P., “Lebesgue spaces of differentiable functions and distributions”, Partial differential equations, Proc. Symp. Pure Math., 4, Amer. Math. Soc., Providence (RI), 1961, 33–49 | MR

[5] Besov O.V., “Prodolzhenie funktsii za predely oblasti s sokhraneniem differentsialno-raznostnykh svoistv v $L_p$”, Mat. sb., 66:1 (1965), 80–96 | MR | Zbl

[6] Burenkov V.I., “Ob odnom metode prodolzheniya differentsiruemykh funktsii”, Tr. MIAN, 140, 1976, 27–67 | MR | Zbl

[7] Hardy G.H., Littlewood J.E., “Some properties of fractional integrals”, Math. Ztschr., 27 (1928), 565–606 | DOI | MR | Zbl

[8] Dezin A.A., “K teoremam vlozheniya i zadache o prodolzhenii funktsii”, DAN SSSR, 88:5 (1953), 741–743 | MR | Zbl

[9] Stein E.M., Singular integrals and differentiability properties of functions, Princeton Math. Ser., 30, Princeton Univ. Press, Princeton, 1970 | MR

[10] Agmon S., “The $L_p$ approach to the Dirichlet problem”, Ann. Scuola Norm. Super. Pisa. Ser. 3, 13:4 (1960), 405–448 | MR | Zbl

[11] Brudnyi Yu.A., “Kriterii suschestvovaniya proizvodnykh v $L^p$”, Mat. sb., 73:1 (1967), 42–65 | MR