Kipriyanov--Radon Transform
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Studies on function theory and differential equations, Tome 248 (2005), pp. 153-163

Voir la notice de l'article provenant de la source Math-Net.Ru

A transformation $K_\gamma$ is considered; this transformation is similar to the Radon transform but is adapted to singular differential equations with the Bessel operator $B_{x_n}=\frac {\partial ^2}{\partial x_n^2} +\frac \gamma {x_n}\frac \partial {\partial x_n}$, $\gamma >0$, which is applied with respect to one of the variables. The following formulas are obtained: for the $K_\gamma$ transform of generalized shifts, for the $K_\gamma$ transform of generalized convolutions, a formula for calculating the $K_\gamma$ transform of a homogeneous linear singular differential operator with constant coefficients such that the operator $B_{x_n}$ acts in the last variable, and a formula for the action of this operator on the $K_\gamma$ transform of a test function. The main results of the paper are formulas for reconstructing functions from their $K_\gamma $ transforms. Three cases are considered: (a) the general case of $\gamma>0$, (b) the case when $\gamma>0$ is integer and $n+\gamma$ is odd, and (c) the case when $\gamma>0$ is integer and $n+\gamma $ is even. In case (a), inversion is obtained by applying mixed B-hypersingular integrals. In cases (b) and (c), integer positive powers of the Laplace–Bessel operator $\Delta _{\mathrm B}=\Delta _{x'}+B_{x_n}$ are applied, where $\Delta _{x'}$ is the Laplace operator in the variables $x'=(x_1,\dots ,x_{n-1})$.
@article{TM_2005_248_a15,
     author = {L. N. Lyakhov},
     title = {Kipriyanov--Radon {Transform}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {153--163},
     publisher = {mathdoc},
     volume = {248},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2005_248_a15/}
}
TY  - JOUR
AU  - L. N. Lyakhov
TI  - Kipriyanov--Radon Transform
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2005
SP  - 153
EP  - 163
VL  - 248
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2005_248_a15/
LA  - ru
ID  - TM_2005_248_a15
ER  - 
%0 Journal Article
%A L. N. Lyakhov
%T Kipriyanov--Radon Transform
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2005
%P 153-163
%V 248
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2005_248_a15/
%G ru
%F TM_2005_248_a15
L. N. Lyakhov. Kipriyanov--Radon Transform. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Studies on function theory and differential equations, Tome 248 (2005), pp. 153-163. http://geodesic.mathdoc.fr/item/TM_2005_248_a15/