Kipriyanov--Radon Transform
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Studies on function theory and differential equations, Tome 248 (2005), pp. 153-163.

Voir la notice de l'article provenant de la source Math-Net.Ru

A transformation $K_\gamma$ is considered; this transformation is similar to the Radon transform but is adapted to singular differential equations with the Bessel operator $B_{x_n}=\frac {\partial ^2}{\partial x_n^2} +\frac \gamma {x_n}\frac \partial {\partial x_n}$, $\gamma >0$, which is applied with respect to one of the variables. The following formulas are obtained: for the $K_\gamma$ transform of generalized shifts, for the $K_\gamma$ transform of generalized convolutions, a formula for calculating the $K_\gamma$ transform of a homogeneous linear singular differential operator with constant coefficients such that the operator $B_{x_n}$ acts in the last variable, and a formula for the action of this operator on the $K_\gamma$ transform of a test function. The main results of the paper are formulas for reconstructing functions from their $K_\gamma $ transforms. Three cases are considered: (a) the general case of $\gamma>0$, (b) the case when $\gamma>0$ is integer and $n+\gamma$ is odd, and (c) the case when $\gamma>0$ is integer and $n+\gamma $ is even. In case (a), inversion is obtained by applying mixed B-hypersingular integrals. In cases (b) and (c), integer positive powers of the Laplace–Bessel operator $\Delta _{\mathrm B}=\Delta _{x'}+B_{x_n}$ are applied, where $\Delta _{x'}$ is the Laplace operator in the variables $x'=(x_1,\dots ,x_{n-1})$.
@article{TM_2005_248_a15,
     author = {L. N. Lyakhov},
     title = {Kipriyanov--Radon {Transform}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {153--163},
     publisher = {mathdoc},
     volume = {248},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2005_248_a15/}
}
TY  - JOUR
AU  - L. N. Lyakhov
TI  - Kipriyanov--Radon Transform
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2005
SP  - 153
EP  - 163
VL  - 248
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2005_248_a15/
LA  - ru
ID  - TM_2005_248_a15
ER  - 
%0 Journal Article
%A L. N. Lyakhov
%T Kipriyanov--Radon Transform
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2005
%P 153-163
%V 248
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2005_248_a15/
%G ru
%F TM_2005_248_a15
L. N. Lyakhov. Kipriyanov--Radon Transform. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Studies on function theory and differential equations, Tome 248 (2005), pp. 153-163. http://geodesic.mathdoc.fr/item/TM_2005_248_a15/

[1] Kipriyanov I.A., Kononenko V.I., “O fundamentalnykh resheniyakh nekotorykh singulyarnykh uravnenii v chastnykh proizvodnykh”, Dif. uravneniya, 5:8 (1969), 1470–1483 | MR | Zbl

[2] Kipriyanov I.A., Singulyarnye ellipticheskie kraevye zadachi, Nauka, M., 1996

[3] Lyakhov L.N., “O simvole integralnogo operatora tipa B-potentsiala s odnorodnoi kharakteristikoi”, Dokl. RAN, 351:2 (1996), 164–168 | MR | Zbl

[4] Kipriyanov I.A., Lyakhov L.N., “O preobrazovaniyakh Fure, Fure–Besselya i Radona”, Dokl. RAN, 360:2 (1998), 157–160 | MR | Zbl

[5] Lyakhov L.N., “Obraschenie preobrazovaniya Kipriyanova–Radona”, Dokl. RAN, 399:5 (2004), 597–600 | MR

[6] Lyakhov L.N., “Ob odnom klasse gipersingulyarnykh operatorov”, DAN SSSR, 315:2 (1990), 291–296 | Zbl

[7] Levitan B.M., “Razlozhenie po funktsiyam Besselya v ryady i integraly Fure”, UMN, 6:2 (1951), 102–143 | MR | Zbl

[8] Ion F., Ploskie volny i sfericheskie srednie v primenenii k differentsialnym uravneniyam s chastnymi proizvodnymi, Izd-vo inostr. lit., M., 1958

[9] Dvait G.B., Tablitsy integralov i drugie matematicheskie formuly, Nauka, M., 1977

[10] Khelgason C., Preobrazovanie Radona, Mir, M., 1983

[11] Nikolskii S.M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977

[12] Gelfand I.M., Graev M.I., Vilenkin I.Ya., Integralnaya geometriya i svyazannye s nei voprosy teorii predstavlenii, Fizmatgiz, M., 1962

[13] Edvards R., Funktsionalnyi analiz: Teoriya i prilozhenie, Mir, M., 1969