Optimization of the Boundary Control of an Elastic Force at One Endpoint of a String with the Other Endpoint Fixed
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Studies on function theory and differential equations, Tome 248 (2005), pp. 117-123
Cet article a éte moissonné depuis la source Math-Net.Ru
For a large time interval $T$, we study the boundary control of an elastic force at the endpoint $x=0$ of a string under the condition that the second endpoint $x=l$ of the string is fixed. We determine and present in an analytical form the optimal boundary control $u_x(0,t)=\mu (t)$ that minimizes the elastic boundary energy integral $\int _0^T\mu ^2(t)\,dt$ over the set of all functions $\mu (t)$ from the class $L_2[0,T]$ under the condition that the oscillation process transfers the string from an arbitrary given initial state into an arbitrary given final state.
@article{TM_2005_248_a11,
author = {V. A. Il'in},
title = {Optimization of the {Boundary} {Control} of an {Elastic} {Force} at {One} {Endpoint} of a {String} with the {Other} {Endpoint} {Fixed}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {117--123},
year = {2005},
volume = {248},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2005_248_a11/}
}
TY - JOUR AU - V. A. Il'in TI - Optimization of the Boundary Control of an Elastic Force at One Endpoint of a String with the Other Endpoint Fixed JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2005 SP - 117 EP - 123 VL - 248 UR - http://geodesic.mathdoc.fr/item/TM_2005_248_a11/ LA - ru ID - TM_2005_248_a11 ER -
%0 Journal Article %A V. A. Il'in %T Optimization of the Boundary Control of an Elastic Force at One Endpoint of a String with the Other Endpoint Fixed %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2005 %P 117-123 %V 248 %U http://geodesic.mathdoc.fr/item/TM_2005_248_a11/ %G ru %F TM_2005_248_a11
V. A. Il'in. Optimization of the Boundary Control of an Elastic Force at One Endpoint of a String with the Other Endpoint Fixed. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Studies on function theory and differential equations, Tome 248 (2005), pp. 117-123. http://geodesic.mathdoc.fr/item/TM_2005_248_a11/
[1] Ilin V.A., “Granichnoe upravlenie protsessom kolebanii na dvukh kontsakh v terminakh obobschennogo resheniya volnovogo uravneniya s konechnoi energiei”, Dif. uravneniya, 36:11 (2000), 1513–1528 | MR | Zbl
[2] Ilin V.A., “Granichnoe upravlenie protsessom kolebanii na odnom kontse pri zakreplennom vtorom kontse v terminakh obobschennogo resheniya volnovogo uravneniya s konechnoi energiei”, Dif. uravneniya, 36:12 (2000), 1670–1686 | MR | Zbl
[3] Ilin V.A., “O razreshimosti smeshannykh zadach dlya giperbolicheskogo i parabolicheskogo uravnenii”, UMN, 15:2 (1960), 97–154 | MR | Zbl