On Metric Completeness and Order Completeness
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometric topology and set theory, Tome 247 (2004), pp. 228-236.

Voir la notice de l'article provenant de la source Math-Net.Ru

A positive answer to the question of whether there exists a metric on the lattice of continuous functions that generates uniform convergence and is such that the metric completion is simultaneously the order completion is given. Two interpretations of the obtained metric lattice are suggested.
@article{TM_2004_247_a15,
     author = {S. N. Samborskii},
     title = {On {Metric} {Completeness} and {Order} {Completeness}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {228--236},
     publisher = {mathdoc},
     volume = {247},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2004_247_a15/}
}
TY  - JOUR
AU  - S. N. Samborskii
TI  - On Metric Completeness and Order Completeness
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 228
EP  - 236
VL  - 247
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2004_247_a15/
LA  - ru
ID  - TM_2004_247_a15
ER  - 
%0 Journal Article
%A S. N. Samborskii
%T On Metric Completeness and Order Completeness
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 228-236
%V 247
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2004_247_a15/
%G ru
%F TM_2004_247_a15
S. N. Samborskii. On Metric Completeness and Order Completeness. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometric topology and set theory, Tome 247 (2004), pp. 228-236. http://geodesic.mathdoc.fr/item/TM_2004_247_a15/

[1] Birkgof G., Teoriya reshetok, Nauka, M., 1984 | MR

[2] Neubrunn T., “Quasi-continuity”, Real Anal. Exchange, 14:2 (1989), 259–306 | MR | Zbl

[3] Samborskii S. N., “O rasshireniyakh differentsialnykh operatorov i negladkikh resheniyakh differentsialnykh uravnenii”, Kibernetika i sistemnyi analiz, 2002, no. 3, 163–180 | MR | Zbl