A~Remark on the Realization of Mappings of the 3-Dimensional Sphere into Itself
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometric topology and set theory, Tome 247 (2004), pp. 10-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of realizing a mapping $f\colon S^3 \to S^3$ of the $3$-dimensional sphere into itself in the ambient space $\mathbb R^6$ is reformulated in elementary terms. It is proved that, for $n=1,3,7$, there exists an equivariant mapping $F\colon S^n\times S^n\to S^n\times S^n$ such that a formal obstruction to its realization in $\mathbb R^{2n}$ is nontrivial.
@article{TM_2004_247_a1,
     author = {P. M. Akhmet'ev},
     title = {A~Remark on the {Realization} of {Mappings} of the {3-Dimensional} {Sphere} into {Itself}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {10--14},
     publisher = {mathdoc},
     volume = {247},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2004_247_a1/}
}
TY  - JOUR
AU  - P. M. Akhmet'ev
TI  - A~Remark on the Realization of Mappings of the 3-Dimensional Sphere into Itself
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 10
EP  - 14
VL  - 247
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2004_247_a1/
LA  - ru
ID  - TM_2004_247_a1
ER  - 
%0 Journal Article
%A P. M. Akhmet'ev
%T A~Remark on the Realization of Mappings of the 3-Dimensional Sphere into Itself
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 10-14
%V 247
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2004_247_a1/
%G ru
%F TM_2004_247_a1
P. M. Akhmet'ev. A~Remark on the Realization of Mappings of the 3-Dimensional Sphere into Itself. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometric topology and set theory, Tome 247 (2004), pp. 10-14. http://geodesic.mathdoc.fr/item/TM_2004_247_a1/

[1] Akhmetev P. M., “Ob izotopicheskoi i diskretnoi realizatsiyakh otobrazhenii $n$-mernoi sfery v evklidovom prostranstve”, Mat. sb., 187:7 (1996), 3–34 | MR

[2] Akhmetev P. M., “Vlozheniya kompaktov, stabilnye gomotopicheskie gruppy sfer i teoriya osobennostei”, UMN, 55:3 (2000), 3–62 | MR

[3] Akhmetiev P. M., “Pontryagin–Thom construction for approximation of mappings by embeddings”, Topol. and Appl., 140 (2004), 133–149 | DOI | MR | Zbl

[4] Akhmetev P. M., Melikhov S. A., “Ob izotopicheskoi realizuemosti nepreryvnykh otobrazhenii”, Zap. nauch. sem. POMI, 276, 2000, 53–87 | MR

[5] Gromov M., Differentsialnye sootnosheniya s chastnymi proizvodnymi, Mir, M., 1990 | MR

[6] Melikhov S., “On maps with unstable singularities”, Topol. and Appl., 120 (2002), 105–156 | DOI | MR | Zbl

[7] Melikhov S. A., “Vyvorachivaniya sfer i realizatsiya otobrazhenii”, Tr. MIAN, 247, 2004, 159–181 ; arXiv: /math.GT/0305158 | MR | Zbl

[8] Repovs D., Skopenkov A. B., “A deleted product criterion for approximability of maps by embeddings”, Topol. and Appl., 87 (1998), 1–19 | DOI | MR | Zbl

[9] Smale S., “The classification of immersions of spheres in Euclidean spaces”, Ann. Math. Ser. 2, 69 (1959), 327–334 | DOI | MR