Symplectic Groupoids Related to Poisson--Lie Groups
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 43-63

Voir la notice de l'article provenant de la source Math-Net.Ru

A new interpretation of a groupoid of triangular bilinear forms is given. Namely, we construct a symplectic groupoid related to any given Poisson–Lie group with an appropriate involution. This allows one to construct a symplectic groupoid dual to the groupoid of triangular forms.
@article{TM_2004_246_a3,
     author = {A. I. Bondal},
     title = {Symplectic {Groupoids} {Related} to {Poisson--Lie} {Groups}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {43--63},
     publisher = {mathdoc},
     volume = {246},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2004_246_a3/}
}
TY  - JOUR
AU  - A. I. Bondal
TI  - Symplectic Groupoids Related to Poisson--Lie Groups
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 43
EP  - 63
VL  - 246
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2004_246_a3/
LA  - ru
ID  - TM_2004_246_a3
ER  - 
%0 Journal Article
%A A. I. Bondal
%T Symplectic Groupoids Related to Poisson--Lie Groups
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 43-63
%V 246
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2004_246_a3/
%G ru
%F TM_2004_246_a3
A. I. Bondal. Symplectic Groupoids Related to Poisson--Lie Groups. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 43-63. http://geodesic.mathdoc.fr/item/TM_2004_246_a3/