Nonrational Complete Intersections
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 316-320.

Voir la notice de l'article provenant de la source Math-Net.Ru

The nonrationality of a general complete intersection $\bigcap_{i=1}^kF_i\subset{\mathbb P}^M$, where $F_i$ is a hypersurface of degree $d_i$, is proved under the condition that equality $\sum_{i=1}^kd_i=M$ holds and $\exists\,d_j\notin\{2,3,5\}$.
@article{TM_2004_246_a21,
     author = {I. A. Cheltsov and L. Votslav},
     title = {Nonrational {Complete} {Intersections}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {316--320},
     publisher = {mathdoc},
     volume = {246},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2004_246_a21/}
}
TY  - JOUR
AU  - I. A. Cheltsov
AU  - L. Votslav
TI  - Nonrational Complete Intersections
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 316
EP  - 320
VL  - 246
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2004_246_a21/
LA  - ru
ID  - TM_2004_246_a21
ER  - 
%0 Journal Article
%A I. A. Cheltsov
%A L. Votslav
%T Nonrational Complete Intersections
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 316-320
%V 246
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2004_246_a21/
%G ru
%F TM_2004_246_a21
I. A. Cheltsov; L. Votslav. Nonrational Complete Intersections. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 316-320. http://geodesic.mathdoc.fr/item/TM_2004_246_a21/

[1] Pukhlikov A. V., “Birationally rigid Fano complete intersections”, J. Reine und Angew. Math., 541 (2001), 55–79 | MR | Zbl

[2] Kollár J., “Nonrational hypersurfaces”, J. Amer. Math. Soc., 8 (1995), 241–249 | DOI | MR | Zbl

[3] Kollár J., Rational curves on algebraic varieties, Springer, Berlin, 1996 | MR

[4] Iskovskikh V. A., Manin Yu. I., “Trekhmernye kvartiki i kontrprimery k probleme Lyurota”, Mat. sb., 86 (1971), 140–166 | MR | Zbl

[5] Pukhlikov A. V., “Birational isomorphisms of four-dimensional quintics”, Invent. Math., 87 (1987), 303–329 | DOI | MR | Zbl

[6] Pukhlikov A. V., “Birational automorphisms of Fano hypersurfaces”, Invent. Math., 134 (1998), 401–426 | DOI | MR | Zbl

[7] Pukhlikov A. V., “Biratsionalno zhestkie giperpoverkhnosti Fano”, Izv. RAN. Ser. mat., 66:6 (2002), 159–186 | MR | Zbl

[8] Cheltsov I. A., “O gladkoi chetyrekhmernoi kvintike”, Mat. sb., 191:9 (2000), 139–160 | MR | Zbl

[9] Cheltsov I. A., “Neratsionalnost chetyrekhmernogo gladkogo polnogo peresecheniya kvadriki i kvartiki, ne soderzhaschego ploskosti”, Mat. sb., 194:11 (2003), 95–116 | MR

[10] Eisenbud D., Grayson D. R., Stillman M., Sturmfels B., Computations in algebraic geometry with Macaulay 2, Springer, Berlin, 2002 | MR

[11] Clemens H., Griffiths P., “The intermediate Jacobian of the cubic threefold”, Ann. Math. Ser. 2, 95 (1972), 73–100 | DOI | MR

[12] Beauville A., “Variétés de Prym et jacobiennes intermédiaires”, Ann. Sci. Ecole Norm. Super, 10 (1977), 304–392 | MR

[13] Artin M., Mumford D., “Some elementary examples of unirational varieties which are not rational”, Proc. London Math. Soc., 25 (1972), 75–95 | DOI | MR | Zbl

[14] Iskovskikh V. A., “O probleme ratsionalnosti dlya trekhmernykh algebraicheskikh mnogoobrazii”, Tr. MIAN, 218, 1997, 190–232 | MR | Zbl

[15] Matsusaka T., “Algebraic deformations of polarized varieties”, Nagoya Math. J., 31 (1968), 185–245 | MR | Zbl

[16] Mori S., “On a generalization of complete intersections”, J. Math. Kyoto Univ., 15 (1975), 619–646 | MR | Zbl